资源预览内容
第1页 / 共5页
第2页 / 共5页
第3页 / 共5页
第4页 / 共5页
第5页 / 共5页
亲,该文档总共5页全部预览完了,如果喜欢就下载吧!
资源描述
求一次函数解析式的常见题型一次函数及其图像是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容。其中求一次函数解析式就是一类常见题型。一. 定义型 例1. 已知函数是一次函数,求其解析式。 解:由一次函数定义知 ,故一次函数的解析式为 注意:利用定义求一次函数解析式时,要保证。如本例中应保证二. 点斜型 例2. 已知一次函数的图像过点(2,1),求这个函数的解析式。 解:一次函数的图像过点(2,1) ,即 故这个一次函数的解析式为 变式问法:已知一次函数,当时,y1,求这个函数的解析式。三. 两点型 已知某个一次函数的图像与x轴、y轴的交点坐标分别是(2,0)、(0,4),则这个函数的解析式为_。 解:设一次函数解析式为 由题意得 故这个一次函数的解析式为四. 图像型 例4. 已知某个一次函数的图像如图所示,则该函数的解析式为_。 解:设一次函数解析式为 由图可知一次函数的图像过点(1,0)、(0,2) 有 故这个一次函数的解析式为五. 斜截型 例5. 已知直线与直线平行,且在y轴上的截距为2,则直线的解析式为_。 解析:两条直线:;:。当,时, 直线与直线平行,。 又直线在y轴上的截距为2, 故直线的解析式为六. 平移型 例6. 把直线向下平移2个单位得到的图像解析式为_。 解析:设函数解析式为,直线向下平移2个单位得到的直线与直线平行 直线在y轴上的截距为,故图像解析式为七. 实际应用型 例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为_。 解:由题意得,即 故所求函数的解析式为() 注意:求实际应用型问题的函数关系式要写出自变量的取值范围。八. 面积型 例8. 已知直线与两坐标轴所围成的三角形面积等于4,则直线解析式为_。 解:易求得直线与x轴交点为(,0),所以,所以,即 故直线解析式为或九. 对称型 若直线与直线关于 (1)x轴对称,则直线l的解析式为 (2)y轴对称,则直线l的解析式为 (3)直线yx对称,则直线l的解析式为 (4)直线对称,则直线l的解析式为 (5)原点对称,则直线l的解析式为 例9. 若直线l与直线关于y轴对称,则直线l的解析式为_。 解:由(2)得直线l的解析式为练习题:1. 已知直线y=3x2, 当x=1时,y= 2. 已知直线经过点A(2,3),B(-1,-3),则直线解析式为_3. 点(-1,2)在直线y=2x4上吗? (填在或不在)4. 当m时,函数y=(m-2) +5是一次函数,此时函数解析式为。5. 已知直线y=3x+b与两坐标轴所围成的三角形的面积为6,则函数的解析式为 .6. 已知变量y和x成正比例,且x=2时,y=,则y和x的函数关系式为 。7. 点(2,5)关于原点的对称点的坐标为 ;关于x轴对称的点的坐标为 ;关于y轴对称的点的坐标为 。8. 直线y=kx2与x轴交于点(1,0),则k= 。9. 直线y=2x1与x轴的交点坐标为 与y轴的交点坐标 。10. 若直线y=kxb平行直线y=3x4,且过点(1,-2),则k= .11. 已知A(-1,2), B(1,-1), C(5,1), D(2,4), E(2,2),其中在直线y=-x+6上的点有_,在直线y=3x-4上的点有_12. 某人用充值50元的IC卡从A地向B地打长途电话,按通话时间收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若此人第一次通话t分钟(3t45),则IC卡上所余的费用y(元)与t(分)之间的关系式是 .13. 某商店出售一种瓜子,其售价y(元)与瓜子质量x(千克)之间的关系如下表质量x(千克)1234售价y(元)3.60+0.207.20+0.2010.80+0.2014.40+0.2由上表得y与x之间的关系式是 14. 已知:一次函数的图象与正比例函数Y=-X平行,且通过点(0,4), (1)求一次函数的解析式.(2)若点M(-8,m)和N(n,5)在一次函数的图象上,求m,n的值15. 已知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= x的图象相交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形面积.
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号