资源预览内容
第1页 / 共7页
第2页 / 共7页
第3页 / 共7页
第4页 / 共7页
第5页 / 共7页
第6页 / 共7页
第7页 / 共7页
亲,该文档总共7页全部预览完了,如果喜欢就下载吧!
资源描述
高中数学学业程度考知识点总结数学程度考是高中数学的一个重要组成局部。在考试之前,高中生需要做好数学知识点的复习。下面就是WTT给大家带来的高中数学程度考知识点总结,希望能帮助到大家!高中数学学业程度考知识点11.万能公式令tan(a/2)=tsina=2t/(1+t2)cosa=(1-t2)/(1+t2)tana=2t/(1-t2)2.辅助角公式asint+bcost=(a2+b2)(1/2)sin(t+r)cosr=a/(a2+b2)(1/2)sinr=b/(a2+b2)(1/2)tanr=b/a3.三倍角公式sin(3a)=3sina-4(sina)3cos(3a)=4(cosa)3-3cosatan(3a)=3tana-(tana)3/1-3(tana2)sina_cosb=sin(a+b)+sin(a-b)/2cosa_sinb=sin(a+b)-sin(a-b)/2cosa_cosb=cos(a+b)+cos(a-b)/2sina_sinb=-cos(a+b)-cos(a-b)/2sina+sinb=2sin(a+b)/2cos(a-b)/2sina-sinb=2sin(a-b)/2cos(a+b)/2cosa+cosb=2cos(a+b)/2cos(a-b)/2cosa-cosb=-2sin(a+b)/2sin(a-b)/2向量公式:1.单位向量:单位向量a0=向量a/|向量a|2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根号(x平方+y平方)3.P1(x1,y1)P2(x2,y2)那么向量P1P2=x2-x1,y2-y1|向量P1P2|=根号(x2-x1)平方+(y2-y1)平方4.向量a=x1,x2向量b=x2,y2向量a_向量b=|向量a|_|向量b|_Cos=x1x2+y1y2Cos=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根号(x1平方+y1平方)_根号(x2平方+y2平方)5.空间向量:同上推论(提示:向量a=x,y,z)6.充要条件:假如向量a向量b那么向量a_向量b=0假如向量a/向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y27.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方高中数学学业程度考知识点21、向量的加法向量的加法满足平行四边形法那么和三角形法那么。AB+BC=AC。a+b=(x+x,y+y)。a+0=0+a=a。向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。2、向量的减法假如a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被减”a=(x,y)b=(x,y)那么a-b=(x-x,y-y).4、数乘向量实数和向量a的乘积是一个向量,记作a,且a=a。当>0时,a与a同方向;当<0时,a与a反方向;当=0时,a=0,方向任意。当a=0时,对于任意实数,都有a=0。注:按定义知,假如a=0,那么=0或a=0。实数叫做向量a的系数,乘数向量a的几何意义就是将表示向量a的有向线段伸长或压缩。当>1时,表示向量a的有向线段在原方向(>0)或反方向(<0)上伸长为原来的倍;当<1时,表示向量a的有向线段在原方向(>0)或反方向(<0)上缩短为原来的倍。数与向量的乘法满足下面的运算律结合律:(a)b=(ab)=(ab)。向量对于数的分配律(第一分配律):(+)a=a+a.数对于向量的分配律(第二分配律):(a+b)=a+b.数乘向量的消去律:假如实数0且a=b,那么a=b。假如a0且a=a,那么=。3、向量的的数量积定义:两个非零向量的夹角记为a,b,且a,b0,。定义:两个向量的数量积(内积、点积)是一个数量,记作ab。假设a、b不共线,那么ab=|a|b|cosa,b;假设a、b共线,那么ab=+-ab。向量的数量积的坐标表示:ab=xx+yy。向量的数量积的运算率ab=ba(交换率(a+b)c=ac+bc(分配率向量的数量积的性质aa=|a|的平方。ab=ab=0。|ab|a|b|。高中数学学业程度考知识点31.一些根本概念:(1)向量:既有大小,又有方向的量.(2)数量:只有大小,没有方向的量.(3)有向线段的三要素:起点、方向、长度.(4)零向量:长度为0的向量.(5)单位向量:长度等于1个单位的向量.(6)平行向量(共线向量):方向一样或相反的非零向量.零向量与任一向量平行.(7)相等向量:长度相等且方向一样的向量.2.向量加法运算:三角形法那么的特点:首尾相连.平行四边形法那么的特点:共起点高中数学学业程度考知识点41.“包含”关系子集注意:有两种可能(1)A是B的一局部,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(55,且55,那么5=5)实例:设A=2-1=0B=-1,1“元素一样”结论:对于两个集合A与B,假如集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B任何一个集合是它本身的子集。AA真子集:假如AB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)假如AB,BC,那么AC假如AB同时BA那么A=B3.不含任何元素的集合叫做空集,记为规定:空集是任何集合的子集,空集是任何非空集合的真子集高中数学学业程度考知识点5映射的概念1.理解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多2.映射:设A和B是两个非空集合,假如按照某种对应关系f,对于集合A中的任意一个元素x,在集合B中都存在的一个元素y与之对应,那么,就称对应f:AB为集合A到集合B的一个映射(mapping).映射是特殊的对应,简称“对一”的对应。包括:一对一多对一函数的概念1.函数:设A和B是两个非空的数集,假如按照某种确定的对应关系f,对于集合A中的任意一个数x,在集合B中都存在确定的数y与之对应,那么,就称对应f:AB为集合A到集合B的一个函数。记作y=f(x),xA.其中x叫自变量,x的取值范围A叫函数的定义域;与x的值相对应的y的值函数值,函数值的集合叫做函数的值域。函数是特殊的映射,是非空数集A到非空数集B的映射。2.函数的三要素:定义域、值域、对应关系。这是判断两个函数是否为同一函数的根据。3.区间的概念:设a,bR,且a(a,b)=xa(a,+)=_>aa,+)=_a(-,b)=_高中数学学业程度考知识点总结【全文END】第 页 共 页
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号