资源预览内容
第1页 / 共4页
第2页 / 共4页
第3页 / 共4页
第4页 / 共4页
亲,该文档总共4页全部预览完了,如果喜欢就下载吧!
资源描述
古交中学八年级数学(上)学案2.1数怎么又不够用了(1)学习目标:1、经历无理数发现的过程,感知生活中确实存在着不同于有理数的数2、会判断一个数是否为有理数,并能说出理由。3、在识别某些数是否为有理数的过程中,训练自己的思维判断能力学法指导:重点:感知生活中确实存在着不同于有理数的数,会判断一个数是否为有理数难点:在识别某些数是否为有理数的过程中,训练自己的思维判断能力课前热身:1、把下列各类表示成小数 4/5,5/9,-8/45,2/112、观察上题的结果,你发现了什么?你的发现: 自主学习:1、请同学们按照教材32页的说法剪一剪,拼一拼,然后想一想,a应满足什么条件? 思考:a可能是整数吗?a可能是分数吗,说说你的理由 你的结论: 2、请同学们思考教材32页“做一做”的问题,通过你的思考,你又得到了什么结论?为什么b不是有理数呢?你的理由: 合作交流:1、结合前面两个问题的探究学习,现与同伴交流你的想法,从中你有怎样的新发现?2、如图,在ABC中,CDAB,垂足为D,AC=6,AD=5,讨论:CD可能是整数吗?可能是分数吗?可能是有理数吗?展示讲解:课堂小结:必做题:1、x2=8,则x 分数, 整数, 有理数。(填“是”或“不是”)2、面积为3的正方形的边长 有理数,面积为4的正方形的边长 有理数(填“是”或“不是”)3、判断无限小数不能化成分数( )有理数都是有限小数( )选做题:4、拓展题我国国旗旗面为长方形,长与宽之比为3:2,国旗通用制作尺寸为长240cm,宽160cm,国旗对角线的长可能是整数吗?可能是分数吗?可能是有理数吗?古交中学八年级数学(上)学案2.1数怎么不够用了(2)学习目标:1、借助计算器探索无理数是有限不循环小数,并从中体会无限逼近的思想。2、会判断一个数是有理数还是无理数。3、在探索无理数的过程中,进一步培养自己的合作能力及自己的辨识能力。学法指导:重点:会判断一个数是有理数还是无理数难点:体会无限逼近的思想课前热身:面积为2的正方形的边长满足什么样的条件?它是有理数吗?自主学习:1、请同学们观察教材34页图2-2,思考3个问题,然后思考怎样探索的a的结果?a可能是有限小数吗?a可能等于什么?你的发现: 2、请同学们阅读解答教材34页“做一做”的问题,然后说说你的发现?你的发现: 合作交流:1、请同学们自主阅读教材35页“议一议”的内容,然后与同们交流你的发现?2、根据你的发现,请构造写出两个无理数。展示讲解:请同学们自主解决例1,然后与同伴交流你的解决方法课堂小结:必做题:1、-1,3/2,3.14,- ,3.3,0,2,7/2,4/2,-0.2020020002(相邻两个2之间的0的个数逐次加1),其中是有理数的是_,是无理数的是_,在上面的有理数中分数有_,整数有_。2、判断题(1)有理数与无理数的差都是有理数。( )(2)无限小数都是无理数( )(3)无理数都是无限小数( )(4)两个无理数的和不一定是无理数( )3、如图1面积分别为1,2,3,4,5,6,7,8,9的正方形 边长是有理数的正方形有 个,边长是无理数的正方形有 个。中考真题把下列各数填入相应的集合中:12/13,0,-3.678,-5.1010010001(相邻两个1之间的0的个数逐渐加1)-0.42有理数集合( )无理数集合( )正实数集合( )负实数集合( )选做题4、在某项工程中,需要一块面积为3平方米的正方形钢板,应该如何划线,下料呢?要解决这个问题,必须首先求出正方形的边长,那么,请你算一算。(1)如果精确到十分位,正方形的边长是多少?3平方米(2)如果精确到百分位呢?
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号