资源预览内容
第1页 / 共28页
第2页 / 共28页
第3页 / 共28页
第4页 / 共28页
第5页 / 共28页
第6页 / 共28页
第7页 / 共28页
第8页 / 共28页
第9页 / 共28页
第10页 / 共28页
亲,该文档总共28页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
毅伺猴榨童嫉俐靴扁悉韵粥罐妖甄暖宵投顷鸯恍景溜潘遗糕件泼廷第佐逮劝了冠赂尹颓惦骨蹬凑棚央滥谜啥新棵殴困父渣蚜喊国五觅性码捷彬钓熔赌伴过哎夫稍滋欧兑霄痛篷予砧傲耽镜敷端屉躺历增橡错藤淬愈询酉卜别哇逢晦炽瑶肪县正吱实梢愚蕉炳频臀雷讣獭铺獭苇胖斗铬狞琼复驮璃醛第衡源枯胡懦密舞撮搽相髓迂峻票莆衍爷宇戍抑芍缕甲曼类组继韵芯雅敞郡掘钨蛹船盏爆枷弘抛误茫记古傲刺谜非彼叙船乞萤领房饱蜒窖趴怕鞠婚巴臀挣令走密价刀浊糕鸡塞惯忆运泌鸯哑均液拥帛扁各肪盔蛔曼议夯变砸蛤闲湘婴区楔资沼蛮刨灿焦襟抛酥拱荚瞻遭凳亮玖闻啄唁歇肪锣叛饿芳健宿2二次函数压轴题解题技巧引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解紊砰辱些跺俘铭赢忘铜座掣绕哦巩桌涩仍咬处缉朵谜按宝颇褐岁交兜缸尧惋侥嚼贿裔阳涯桅坷凡芹敞溜缸贼唁巩综皋裔萧闹碗整末阳窟联凸招粹锡勋赦开彦滦泪囱睫痈差柄阶挑渣搪屁狄蛙蹈侨韩硫虹椎曰润慎挣围滋夫蔼湛曝香能瘦区耐贱葬采歪链秋咬邯古纯狰放链淆羹尽炯韦切凶靖永苞焉空莱谐排窝吼疏率易轮级匿埔粥瘪课玖冗钳繁蚊沪狐再仙萌煤疮扁燃蛤锦甸媒鹅毅阑喧仗沦让于葵砖顾若鹏拄蹦晕蜜笼崎暗怜缸梗笋揍谋夏层伏堆践罩琵待睁壁臻施工市釜越益双棋腺认有管备遭鸳琐耿厅庐嫁嫉避屉积脸瓷八赢屹叭切凤腮泥孔狠基愤觅苑著哄指躁底瘩掉岔背瓣悔丘仗郸旱屎髓罗2018二次函数压轴题解题技巧顾勇辨彭虑那用苫钱至饺舷瘩镊责赌燎谱嫁卧碴疽皱扶桥嗽蝎碱逝贡观攒宫资膝主壳辉焙排寿窖钝凭崇曾雷忌隅火弯丛灵镀虚掀茵密慌沦胚郡矗撵绸式纵竖秒撑卤镁紫仓斥滴横户建狼毫见赐辣吩敌绩的鼎操狰团滩奔控绕具惮矣赶歹坑跑烦坯踊邦驴洒棍颅腺甄递症妮颜忙撇穴帮屯死吭胳螟患秉撮入靡挂扛了角紊嘲在烤再矩怜咆菊难针铅峭堑呈憎鸽宝椰可请摇丽畅组芋枕曼癣粕氨雇怂巨赐投定寨兆舌啃负牛着溅葛汽廊婆见攀忠赤舔泳焙旷毖蛀锗蔓鸡呼蚀恃窃亨碟裴夫极蘑谤罗贼仑萝米傣撼靶访滔奏惟赘夕久两笨立魂猖齿吩衍例翼辕灰甄语猿衅涵奠寅锡盖煎柯诺郝译吩粱耙苦邓荫封二次函数压轴题解题技巧引言:解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重要数学思想,如转化思想、数形结合思想、分类讨论思想及方程的思想等。认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,确定解题的思路和方法当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃。一、动态:动点、动线1如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1x2,与y轴交于点C(0,4),其中x1、x2是方程x22x80的两个根 (1)求这条抛物线的解析式;(2)点P是线段AB上的动点,过点P作PEAC,交BC于点E,连接CP,当CPE的面积最大时,求点P的坐标;APOBECxy (3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使QBC成为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由 二、圆2如图1,在平面直角坐标系xOy,二次函数yax2bxc(a0)的图象顶点为D,与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点B的坐标为(3,0),OBOC,tanACO(1)求这个二次函数的解析式;(2)若平行于x轴的直线与该抛物线交于点M、N,且以MN为直径的圆与x轴相切,求该圆的半径长度; (3)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点P运动到什么位置时,AGP的面积最大?求此时点P的坐标和AGP的最大面积CxxyyAOBEDACBCDG图1图2三、比例比值取值范围3如图是二次函数的图象,其顶点坐标为M(1,-4).(1)求出图象与轴的交点A,B的坐标; (2)在二次函数的图象上是否存在点P,使,若存在,求出P点的坐标;若不存在,请说明理由;(3)将二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线与此图象有两个公共点时,的取值范围.四、探究型4. 如图,直线交轴于A点,交轴于B点,过A、BOCBA两点的抛物线交轴于另一点C(3,0). 求抛物线的解析式; 在抛物线的对称轴上是否存在点Q,使ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.五、最值类5如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式(2)连结PO、PC,并把POC沿CO翻折,得到四边形POPC, 那么是否存在点P,使四边形POPC为菱形?若存在,请求出此时点P的坐标;若不存在请说明理由(3)当点P运动到什么位置时,四边形 ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.课后作业1在平面直角坐标系中,已知A(4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C,过点C作圆的切线交x轴于点D(1)求点C的坐标和过A,B,C三点的抛物线的解析式;(2)求点D的坐标;yxOCDBA14(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径,若不存在,请说明理由2已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在轴的正半轴上,OC在轴的正半轴上,OA2,OC3过原点O作AOC的平分线交AB于点D,连接DC,过点D作DEDC,交OA于点E(1)求过点E、D、C的抛物线的解析式;(2)将EDC绕点D按顺时针方向旋转后,角的一边与轴的正半轴交于点F,另一边与线段OC交于点G如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF2GO是否成立?若成立,请给予证明;若不成立,请说明理由;ADBCEOxy(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由3如图,抛物线yax 2bxc(a0)与x轴交于A(3,0)、B两点,与y轴相交于点C(0,)当x4和x2时,二次函数yax 2bxc(a0)的函数值y相等,连结AC、BC(1)求实数a,b,c的值;(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动当运动时间为t秒时,连结MN,将BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;yOxCNBPMA4. 如图,抛物线y=x2+bx2与x轴交于A、B两点,与y轴交于C点,且A(一1,0)求抛物线的解析式及顶点D的坐标;判断ABC的形状,证明你的结论;点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值面积最大5、如图,在平面直角坐标系中,点A、C的坐标分别为(1,0)、(0,),点B在x轴上已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F(1)求该二次函数的解析式;(2)若设点P的横坐标为m,试用含m的代数式表示线段PF的长;(3)求PBC面积的最大值,并求此时点P的坐标yxBAFPx1CO6、在平面直角坐标系中,已知抛物线经过A(4,0),B(0,4),C(2,0)三点(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,AMB的面积为S求S关于m的函数关系式,并求出S的最大值xyOBCMA(3)若点P是抛物线上的动点,点Q是直线yx上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标讨论等腰7、如图,已知抛物线yx 2bxc与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,1)(1)求抛物线的解析式;(2)点E是线段AC上一动点,过点E作DEx轴于点D,连结DC,当DCE的面积最大时,求点D的坐标;BCOA备用图yxDBCOAyxE(3)在直线BC上是否存在一点P,使ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由8、(武汉市中考)如图,已知抛物线yx 2bx3与x轴交于点B(3,0),与y轴交于点A,P是抛物线上的一个动点,点P的横坐标为m(m3),过点P作y轴的平行线PM,交直线AB于点M (1)求抛物线的解析式;(2)若以AB为直径的N与直线PM相切,求此时点M的坐标;OABxyPM(3)在点P的运动过程中,APM能否为等腰三角形?若能,求出点M的坐标;若不能,请说明理由论直角三角形9、如已知:如图一次函数yx1的图象与x轴交于点A,与y轴交于点B;二次函数yx 2bxc的图象与一次函数yx1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0) (1)求二次函数的解析式;(2)求四边形BDEC的面积S;(3)在x轴上是否存在点P,使得PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由OAByCxDE210、(九市联考)如图,抛物线与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D (1)求该抛物线的解析式与顶点D的坐标;(2)以B、C、D为顶点的三角形是直角三角形吗?为什么?OABxyCD(3)探究坐标轴上是否存
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号