资源预览内容
第1页 / 共19页
第2页 / 共19页
第3页 / 共19页
第4页 / 共19页
第5页 / 共19页
第6页 / 共19页
第7页 / 共19页
第8页 / 共19页
第9页 / 共19页
第10页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2010年普通高等学校招生全国统一考试江苏卷数学全解全析数学试题注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题第14题)、解答题(第15题第20题)。本卷满分160分,考试时间为120分钟。考试结束后,请将本卷和答题卡一并交回。2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。作答必须用0.5毫米黑色墨水的签字笔。请注意字体工整,笔迹清楚。5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。6.请保持答题卡卡面清洁,不要折叠、破损。参考公式:锥体的体积公式: V锥体=Sh,其中S是锥体的底面积,h是高。一、填空题:本大题共14小题,每小题5分,共70分。请把答案填写在答题卡相应的位置上.1、设集合A=-1,1,3,B=a+2,a2+4,AB=3,则实数a=_.2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为_.3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ _.4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间5,40中,其频率分布直方图如图所示,则其抽样的100根中,有_根在棉花纤维的长度小于20mm。5、设函数f(x)=x(ex+ae-x)(xR)是偶函数,则实数a=_6、在平面直角坐标系xOy中,双曲线上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是_7、右图是一个算法的流程图,则输出S的值是_8、函数y=x2(x0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=_9、在平面直角坐标系xOy中,已知圆上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是_10、定义在区间上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP1x轴于点P1,直线PP1与y=sinx的图像交于点P2,则线段P1P2的长为_。11、已知函数,则满足不等式的x的范围是_。12、设实数x,y满足38,49,则的最大值是 。13、在锐角三角形ABC,A、B、C的对边分别为a、b、c,则=_。14、将边长为1m正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是_。二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15、(本小题满分14分)在平面直角坐标系xOy中,点A(1,2)、B(2,3)、C(2,1)。(1) 求以线段AB、AC为邻边的平行四边形两条对角线的长;(2) 设实数t满足()=0,求t的值。16、(本小题满分14分)如图,在四棱锥P-ABCD中,PD平面ABCD,PD=DC=BC=1,AB=2,ABDC,BCD=900。(1) 求证:PCBC;(2) 求点A到平面PBC的距离。17、(本小题满分14分)某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角ABE=,ADE=。(1) 该小组已经测得一组、的值,tan=1.24,tan=1.20,请据此算出H的值;(2) 该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使与之差较大,可以提高测量精确度。若电视塔的实际高度为125m,试问d为多少时,-最大?18、(本小题满分16分)在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M、,其中m0,。(1)设动点P满足,求点P的轨迹;(2)设,求点T的坐标;(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。19、(本小题满分16分)设各项均为正数的数列的前n项和为,已知,数列是公差为的等差数列。(1)求数列的通项公式(用表示);(2)设为实数,对满足的任意正整数,不等式都成立。求证:的最大值为。20、(本小题满分16分)设是定义在区间上的函数,其导函数为。如果存在实数和函数,其中对任意的都有0,使得,则称函数具有性质。(1)设函数,其中为实数。(i)求证:函数具有性质; (ii)求函数的单调区间。(2)已知函数具有性质。给定设为实数,且,若|,求的取值范围。数学(附加题)21.选做题本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答。若多做,则按作答的前两题评分。解答时应写出文字说明、证明过程或演算步骤。A 选修4-1:几何证明选讲(本小题满分10分)AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC。B 选修4-2:矩阵与变换(本小题满分10分)在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1)。设k为非零实数,矩阵M=,N=,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,A1B1C1的面积是ABC面积的2倍,求k的值。C 选修4-4:坐标系与参数方程(本小题满分10分)在极坐标系中,已知圆=2cos与直线3cos+4sin+a=0相切,求实数a的值。D 选修4-5:不等式选讲(本小题满分10分)设a、b是非负实数,求证:。必做题第22题、第23题,每题10分,共计20分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。22、 (本小题满分10分)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元。设生产各种产品相互独立。(1) 记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列;(2) 求生产4件甲产品所获得的利润不少于10万元的概率。23、 (本小题满分10分)已知ABC的三边长都是有理数。(1) 求证cosA是有理数;(2)求证:对任意正整数n,cosnA是有理数。2010年答案填空题1、解析 考查集合的运算推理。3B, a+2=3, a=12、解析 考查复数运算、模的性质。z(2-3i)=2(3+2 i), 2-3i与3+2 i的模相等,z的模为2。3、解析考查古典概型知识。4、解析考查频率分布直方图的知识。100(0.001+0.001+0.004)5=305、解析考查函数的奇偶性的知识。g(x)=ex+ae-x为奇函数,由g(0)=0,得a=1。6、解析考查双曲线的定义。,为点M到右准线的距离,=2,MF=4。7、解析考查流程图理解。输出。8、解析考查函数的切线方程、数列的通项。在点(ak,ak2)处的切线方程为:当时,解得,所以。9、解析考查圆与直线的位置关系。 圆半径为2,圆心(0,0)到直线12x-5y+c=0的距离小于1,的取值范围是(-13,13)。10、解析 考查三角函数的图象、数形结合思想。线段P1P2的长即为sinx的值,且其中的x满足6cosx=5tanx,解得sinx=。线段P1P2的长为11、解析 考查分段函数的单调性。12、解析 考查不等式的基本性质,等价转化思想。,的最大值是27。13、解析 考查三角形中的正、余弦定理三角函数知识的应用,等价转化思想。一题多解。(方法一)考虑已知条件和所求结论对于角A、B和边a、b具有轮换性。当A=B或a=b时满足题意,此时有:,= 4。(方法二),由正弦定理,得:上式=14、解析 考查函数中的建模应用,等价转化思想。一题多解。设剪成的小正三角形的边长为,则:(方法一)利用导数求函数最小值。,当时,递减;当时,递增;故当时,S的最小值是。(方法二)利用函数的方法求最小值。令,则:故当时,S的最小值是。一、 解答题15、解析本小题考查平面向量的几何意义、线性运算、数量积,考查运算求解能力。满分14分。(1)(方法一)由题设知,则所以故所求的两条对角线的长分别为、。(方法二)设该平行四边形的第四个顶点为D,两条对角线的交点为E,则:E为B、C的中点,E(0,1)又E(0,1)为A、D的中点,所以D(1,4) 故所求的两条对角线的长分别为BC=、AD=;(2)由题设知:=(2,1),。由()=0,得:,从而所以。或者:,16、解析 本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力。满分14分。(1)证明:因为PD平面ABCD,BC平面ABCD,所以PDBC。由BCD=900,得CDBC,又PDDC=D,PD、DC平面PCD,所以BC平面PCD。因为PC平面PCD,故PCBC。(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:易证DECB,DE平面PBC,点D、E到平面PBC的距离相等。又点A到平面PBC的距离等于E到平面PBC的距离的2倍。由(1)知:BC平面PCD,所以平面PBC平面PCD于PC,因为PD=DC,PF=FC,所以DFPC,所以DF平面PBC于F。易知DF=,故点A到平面PBC的距离等于。(方法二)体积法:连结AC。设点A到平面PBC的距离为h。因为ABDC,BCD=900,所以ABC=900。从而AB=2,BC=1,得的面积。由PD平面ABCD及PD=1,得三棱锥P-ABC的体积。因为PD平面ABCD,DC平面ABCD,所以PDDC。又PD=DC=1,所以。由PCBC,BC=1,得的面积。由,得,故点A到平面PBC的距离等于。17、解析 本题主要考查解三角形的知识、两角差的正切及不等式的应用。(1),同理:,。 ADAB=DB,故得,解得:。因此,算出的电视塔的高度H是124m。(2)由题设知,得,(当且仅当时,取等号)故当时,最大。因为,则,所以当时,-最大。故所求的是m。18、解析 本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号