资源预览内容
第1页 / 共14页
第2页 / 共14页
第3页 / 共14页
第4页 / 共14页
第5页 / 共14页
第6页 / 共14页
第7页 / 共14页
第8页 / 共14页
第9页 / 共14页
第10页 / 共14页
亲,该文档总共14页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
文档供参考,可复制、编制,期待您的好评与关注! 高中数学常用公式及1 元素与集合的关系:,.2 集合的子集个数共有 个;真子集有个;非空子集有个;非空的真子集有个.3 二次函数的解析式的三种形式:(1) 一般式;(2) 顶点式;(当已知抛物线的顶点坐标时,设为此式)(3) 零点式;(当已知抛物线与轴的交点坐标为时,设为此式)(4)切线式:。(当已知抛物线与直线相切且切点的横坐标为时,设为此式)4 真值表: 同真且真,同假或假5 常见结论的否定形式;原结论反设词原结论反设词是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有个至多有()个小于不小于至多有个至少有()个对所有,成立存在某,不成立或且对任何,不成立存在某,成立且或6 四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)原命题互逆逆命题若则若则互互互为为互否否逆逆否 否否命题逆否命题若非则非互逆若非则非充要条件: (1)、,则P是q的充分条件,反之,q是p的必要条件; (2)、,且q p,则P是q的充分不必要条件;(3)、p p ,且,则P是q的必要不充分条件;4、p p ,且q p,则P是q的既不充分又不必要条件。7 函数单调性:增函数:(1)、文字描述是:y随x的增大而增大。(2)、数学符号表述是:设f(x)在xD上有定义,若对任意的,都有成立,则就叫f(x)在xD上是增函数。D则就是f(x)的递增区间。减函数:(1)、文字描述是:y随x的增大而减小。(2)、数学符号表述是:设f(x)在xD上有定义,若对任意的,都有成立,则就叫f(x)在xD上是减函数。D则就是f(x)的递减区间。单调性性质:(1)、增函数+增函数=增函数;(2)、减函数+减函数=减函数; (3)、增函数-减函数=增函数;(4)、减函数-增函数=减函数;注:上述结果中的函数的定义域一般情况下是要变的,是等号左边两个函数定义域的交集。复合函数的单调性:函数 单调单调性内层函数外层函数复合函数等价关系:(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数. 8函数的奇偶性:(注:是奇偶函数的前提条件是:定义域必须关于原点对称)奇函数:定义:在前提条件下,若有,则f(x)就是奇函数。性质:(1)、奇函数的图象关于原点对称;(2)、奇函数在x0和x0和x 0时,有.或.42 斜率公式 :(、).43 直线的五种方程:(1)点斜式 (直线过点,且斜率为)(2)斜截式 (b为直线在y轴上的截距).(3)两点式 ()(、 ().两点式的推广:(无任何限制条件!)(4)截距式 (分别为直线的横、纵截距,)(5)一般式 (其中A、B不同时为0).直线的法向量:,方向向量:44 夹角公式:(1).(,,)(2).(,).直线时,直线l1与l2的夹角是.45 到的角公式:(1).(,,)(2).(,).直线时,直线l1到l2的角是.46 点到直线的距离 :(点,直线:).47 圆的四种方程:(1)圆的标准方程 .(2)圆的一般方程 (0).(3)圆的参数方程 .(4)圆的直径式方程 (圆的直径的端点是、).48点与圆的位置关系:点与圆的位置关系有三种:若,则点在圆外;点在圆上; 点在圆内.49直线与圆的位置关系:直线与圆的位置关系有三种():;.50 两圆位置关系的判定方法:设两圆圆心分别为O1,O2,半径分别为r1,r2,则:;.51 椭圆的参数方程是.离心率,准线到中心的距离为,焦点到对应准线的距离(焦准距)。过焦点且垂直于长轴的弦叫通经,其长度为:.52 椭圆焦半径公式及两焦半径与焦距构成三角形的面积:,;。53椭圆的的内外部:(1)点在椭圆的内部.(2)点在椭圆的外部.54 椭圆的切线方程:(1) 椭圆上一点处的切线方程是. (2)过椭圆外一点所引两条切线的切点弦方程是. (3)椭圆与直线相切的条件是.55 双曲线的离心率,准线到中心的距离为,焦点到对应准线的距离(焦准距)。过焦点且垂直于实轴的弦叫通经,其长度为:.焦半径公式,两焦半径与焦距构成三角形的面积。
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号