资源预览内容
第1页 / 共17页
第2页 / 共17页
第3页 / 共17页
第4页 / 共17页
第5页 / 共17页
第6页 / 共17页
第7页 / 共17页
第8页 / 共17页
第9页 / 共17页
第10页 / 共17页
亲,该文档总共17页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
福建师范大学21秋常微分方程在线作业一答案参考1. 把长为的线段截为两段,问怎样截法能使以这两段线为边所组成的矩形的面积最大?把长为的线段截为两段,问怎样截法能使以这两段线为边所组成的矩形的面积最大?正确答案:设一段长为x则另一段长为-x矩形面积为f(x)=x(-x)则f(x)=-2x=0故x=/2f(x)=-20故x=/2是f(x)的极大值点。 rn 故当两段等长度截开时以这两线段为边所组成的矩形面积最大。设一段长为x,则另一段长为-x,矩形面积为f(x)=x(-x),则f(x)=-2x=0,故x=/2,f(x)=-20,故x=/2是f(x)的极大值点。故当两段等长度截开时,以这两线段为边所组成的矩形面积最大。2. 描绘函数y=e-x2图形(图3-1)。描绘函数y=e-x2图形(图3-1)。该函数的定义域为(-,+),且函数为偶函数,因此,只要作出它在(0,+)内的图形,即可根据其对称性得到它的全部图形。 求其一、二阶导数,得 y=-2xe-x2 y=2e-x2(2x2-1), 令y=0,得驻点x=0, 令y=0,得, 当x时y0,所以y=0为该函数图形的水平渐近线。 讨论y,y的正负情况,确定函数y=e-x2的增减区间和极值、凹凸区间和拐点,将上述结果归结为表3-16。 根据以上讨论,即可描绘所给函数的图形。 3. 求下列微分方程的通解 x3y&39;-x2y+2xy&39;-2y=x3+3x求下列微分方程的通解x3y-x2y+2xy-2y=x3+3x令x=e,即=Inx,于是 , 代入原方程可得 对应的齐次方程的通解为 又 ,分别为非齐次线性微分方程与的特解,故方程(*)的通解为令=Int,则原方程的通解为 4. 设有n元二次型f(x1,x2,xn)=(x1+x1x2)2+(x2+a2x3)2+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,n)为实数设有n元二次型f(x1,x2,xn)=(x1+x1x2)2+(x2+a2x3)2+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,n)为实数.试问:当a1,a2,an满足何种条件时,二次型f为正定二次型?解法1 由f的定义知,对任意的x1,x2,xn,有f(x1,x2,xn)0,其中等号成立当且仅当 齐次线性方程组(5-20)仅有零解的充分必要条件是其系数行列式不为零,即 所以当1+(-1)n+1a1a2an0时,对于任意不全为零的x1,x2,xn,都有f(x1,x2,xn)0,即当1+(-1)n+1a1a2an0时,二次型f为正定二次型. 解法2 令矩阵 当|C|=1+(-1)n+1a1a2an0时,C为满秩矩阵,因此通过满秩线性变换 即 就可将f化成规范形 可见f的正惯性指数为n,故f为正定的.所以当1+(-1)n+1a1a2an0时,f为正定二次型.读者试利用反证法说明:1+(-1)n+1a1a2an0也是二次型f正定的必要条件. 5. 证明:Gauss整环Zi关于映射 :a+bia2+b2作成一个欧氏环证明:Gauss整环Zi关于映射 :a+bia2+b2作成一个欧氏环正确答案:显然对任意Zi有rn ()=|2 ()=()()rn故当0时令-1=s+ti(stQ)且ab分别是最接近st的整数于是q=a+biZi且rnrn从而由上知:rn (-1-q)=(s-a)2+(t一b)2 (1)rn再令r=-q则r=0或由(1)有rn (r)=(-q=()(-1一q)rn因此Zi关于作成一个欧氏环显然,对任意,Zi,有()=|2,()=()()故当0时,令-1=s+ti(s,tQ)且a,b分别是最接近s,t的整数于是q=a+biZi,且从而由上知:(-1-q)=(s-a)2+(t一b)2(1)再令r=-q,则r=0,或由(1)有(r)=(-q=()(-1一q)因此,Zi关于作成一个欧氏环6. 设A为n阶正交矩阵,Rn,求证设A为n阶正交矩阵,Rn,求证7. 对于总体分布的假设检验,一般都使用2拟合优度检验法,这种检验法要求总体分布的类型为( ) A离散型分布对于总体分布的假设检验,一般都使用2拟合优度检验法,这种检验法要求总体分布的类型为()A离散型分布B连续型分布C只能为正态分布D任何类型分布D8. 向量组1,2,s的秩为r,当每个向量都可以由其中某r个向量线性表出,则这r个向量即为一极大无关组. 若向量向量组1,2,s的秩为r,当每个向量都可以由其中某r个向量线性表出,则这r个向量即为一极大无关组.若向量组1,2,s的秩为r,且其中有一个向量可以由其中某r个向量线性表出,则这r个向量即为一极大无关组?例 设1=(11,13,15),2=(22,26,30),3=(1,1,0),4=(2,0,0),5=(5,5,0),可知r(1,2,3,4,5)=3,且1可以由2,3,5线性表出,但2,3,5不为极大无关组9. 函数f(x)=1/x在(0,+)是减函数。( )A.错误B.正确参考答案:B10. 奇函数的图像关于y轴对称。( )A.正确B.错误参考答案:B11. y=x3cos2x求一阶、二阶导数y=x3cos2x求一阶、二阶导数y=3x2cos2x-2x2sin2x, y=6xcos2x-6x2sin2x-6x2sin2x-4x3cos2x =(6x-4x3)cos2x-12x2sin2x 12. 举例证明,当AB=AC时,未必B=C举例证明,当AB=AC时,未必B=C证 例如,设 则有 13. 长为2l的杆,质量均匀分布,其总质量为M,在其中垂线上高为h处有一质量为m的质点,求它们之间引力的大小长为2l的杆,质量均匀分布,其总质量为M,在其中垂线上高为h处有一质量为m的质点,求它们之间引力的大小建立如图所示的坐标系, 取x为积分变量,x-l,l,任取一微元x,x+dx,小段与质点的距离为,质点对小段的引力为 铅垂方向的分力元素为, 由对称性知在水平方向的分力为Fx=0 14. 多项式3x44x3x22的首项系数是A、1.0B、2.0C、3.0D、4.0多项式3x4+4x3+x2+2的首项系数是A、1.0B、2.0C、3.0D、4.0正确答案: C15. 设A为三阶矩阵,A的特征值为1,3,5,试求行列式det(A*-2E)的值,其中A*是A的伴随矩阵设A为三阶矩阵,A的特征值为1,3,5,试求行列式det(A*-2E)的值,其中A*是A的伴随矩阵因A的特征值为1,3,5,所以A可逆,且detA=15,于是A*的特征值依次为, 所以A*-2E的特征值为15-2=13,5-2=3,3-2=1, 因此det(A*-2E)=1331=39 16. y=1/(x-2)有渐近线( )。A.x=2B.y=2C.x=-2D.x=0参考答案:A17. 我们知道,平面曲线x(t)的曲率中心的轨迹y(t)称为x(t)的渐缩线,x(t)称为y(t)的一条渐伸线,y(t)的我们知道,平面曲线x(t)的曲率中心的轨迹y(t)称为x(t)的渐缩线,x(t)称为y(t)的一条渐伸线,y(t)的切向量为x(t)的主法向量试将它推广到空间R3正确答案:设n(t)=cosV2(t)+sinV3(t)为点x(t)处的法向量其中=(nV2)为n(t)与V2(t)的夹角称直线y(t)=x(t)+n(t) (R)为该曲线在点x(t)处的法线显然主法线(=0)与从法线都是曲线在x(t)处的法线定义 如果曲线y(t)的切线是曲线x(t)的法线则称x(t)为y(t)的渐伸线;而y(t)为x(t)的渐缩线定理1设y(t)(atb)为空间R3中的曲线则y(t)的渐伸线为 其中c为常数分别为y(t)的弧长与单位切向量及曲率c取不同的值就得到不同的渐伸线(由此得到空间曲线与平面曲线的渐伸线在形式上是相同的并都有无数条)证明设y(t)的渐伸线为两边点乘并注意到y(t)的切线是渐伸线x(t)的法线所以(t)+y(t)=0积分得因此y(t)的渐伸线为定理2给定空间R3中的曲线x(t)(atb)则x(t)的渐缩线为其中k(t)V2(t)V3(t)分别为x(t)的曲率主法向量从法向量;而0=(t0)是任意常数0取不同的值就得到不同的渐缩线rn证明设x(t)的渐缩线为y()=x(t)+(t)n(t)其中n(t)=cos(t).V2(t)+sin(t)V3(t) (t)=(n(t)V2(t)因为rn根据定理222y(t)的切线面(除脊线外)可展又因为y(t)为x(t)的渐缩线故y(t)的切线是x(t)的法线从而y(t)的切线面就是x(t)的法线面它是可展曲面再根据定理221有因为y(t)为x(t)的渐缩线所以y(t)的切向量就是x(t)的法向量于是上式两边点乘V1(t)得到0=1一(t)(t)cos(t)即此外从前式知cos(t)0且x(t)的渐缩线为设n(t)=cosV2(t)+sinV3(t)为点x(t)处的法向量,其中=(n,V2)为n(t)与V2(t)的夹角,称直线y(t)=x(t)+n(t)(R)为该曲线在点x(t)处的法线显然,主法线(=0)与从法线都是曲线在x(t)处的法线定义如果曲线y(t)的切线是曲线x(t)的法线,则称x(t)为y(t)的渐伸线;而y(t)为x(t)的渐缩线定理1设y(t)(atb)为空间R3中的曲线,则y(t)的渐伸线为,其中c为常数,分别为y(t)的弧长与单位切向量及曲率c取不同的值就得到不同的渐伸线(由此得到空间曲线与平面曲线的渐伸线在形式上是相同的,并都有无数条)证明设y(t)的渐伸线为,两边点乘并注意到y(t)的切线是渐伸线x(t)的法线,所以(t)+y(t)=0积分得因此,y(t)的渐伸线为定理2给定空间R3中的曲线x(t)(atb),则x(t)的渐缩线为其中k(t),V2(t),V3(t)分别为x(t)的曲率,主法向量,从法向量;而0=(t0)是任意常数,0取不同的值就得到不同的渐缩线证明设x(t)的渐缩线为y()=x
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号