资源预览内容
第1页 / 共90页
第2页 / 共90页
第3页 / 共90页
第4页 / 共90页
第5页 / 共90页
第6页 / 共90页
第7页 / 共90页
第8页 / 共90页
第9页 / 共90页
第10页 / 共90页
亲,该文档总共90页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
习题11-1已知质点位矢随时间变化的函数形式为其中为常量求:(1)质点的轨道;(2)速度和速率。解:(1) 由,知: ,消去t可得轨道方程:质点的轨道为圆心在(0,0)处,半径为R的圆;(2)由,有速度:而,有速率:。1-2已知质点位矢随时间变化的函数形式为,式中的单位为m,的单位为s。求:(1)质点的轨道;(2)从到秒的位移;(3)和秒两时刻的速度。解:(1)由,可知 , 消去t得轨道方程为:,质点的轨道为抛物线。(2)由,有速度:从到秒的位移为:(3)和秒两时刻的速度为:, 。1-3已知质点位矢随时间变化的函数形式为,式中的单位为m,的单位为s.求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。解:(1)由,有:,有:;(2)而,有速率:,利用有: 。1-4一升降机以加速度上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为,求螺钉从天花板落到底板上所需的时间。解法一:以地面为参照系,坐标如图,设同一时间内螺钉下落的距离为,升降机上升的高度为,运动方程分别为 (1) (2) (3)(注意到为负值,有)联立求解,有:。解法二:以升降机为非惯性参照系,则重力加速度修正为,利用,有:。1-5一质量为的小球在高度处以初速度水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的,。解:(1)如图,可建立平抛运动学方程: , ,;(2)联立上面两式,消去t得小球轨迹方程:(为抛物线方程);(3),即:,在落地瞬时,有:, 又 , 。1-6路灯距地面的高度为,一身高为的人在路灯下以匀速沿直线行走。试证明人影的顶端作匀速运动,并求其速度.证明:设人向路灯行走,t时刻人影中头的坐标为,足的坐标为,由相似三角形关系可得:,两边对时间求导有: ,考虑到:,知人影中头的速度:(常数)。1-7一质点沿直线运动,其运动方程为(m),在 t从0秒到3秒的时间间隔内,则质点走过的路程为多少?解:由于是求质点通过的路程,所以可考虑在03s的时间间隔内,质点速度为0的位置: 若 解得 ,。1-8一弹性球直落在一斜面上,下落高度,斜面对水平的倾角,问它第二次碰到斜面的位置距原来的下落点多远(假设小球碰斜面前后速度数值相等,碰撞时人射角等于反射角)。解:小球落地时速度为,建立沿斜面的直角坐标系,以小球第一次落地点为坐标原点如图示, (1) (2)第二次落地时:,代入(2)式得:,所以:。1-9地球的自转角速度最大增加到若干倍时,赤道上的物体仍能保持在地球上而不致离开地球?已知现在赤道上物体的向心加速度约为,设赤道上重力加速度为。解:由向心力公式:,赤道上的物体仍能保持在地球必须满足:,而现在赤道上物体的向心力为:1-10已知子弹的轨迹为抛物线,初速为,并且与水平面的夹角为。试分别求出抛物线顶点及落地点的曲率半径。解:(1)抛物线顶点处子弹的速度,顶点处切向加速度为0,法向加速度为。因此有:,;(2)在落地点时子弹的,由抛物线对称性,知法向加速度方向与竖直方向成角,则:,有: 则: 。1-11一飞行火箭的运动学方程为,其中b是与燃料燃烧速率有关的量,u为燃气相对火箭的喷射速度。求:(1)火箭飞行速度与时间的关系;(2)火箭的加速度。解:一维运动,直接利用公式:,有:(1) , (2)1-12飞机以的速度沿水平直线飞行,在离地面高时,驾驶员要把物品投到前方某一地面目标上,问:投放物品时,驾驶员看目标的视线和竖直线应成什么角度?此时目标距飞机下方地点多远?解:设此时飞机距目标水平距离为有:,联立方程解得:,。1-13一物体和探测气球从同一高度竖直向上运动,物体初速为,而气球以速度匀速上升,问气球中的观察者在第二秒末、第三秒末、第四秒末测得物体的速度各多少?解:物体在任意时刻的速度表达式为:故气球中的观察者测得物体的速度 代入时间t可以得到第二秒末物体速度:,(向上)第三秒末物体速度:第四秒末物体速度:(向下)。思考题11-1质点作曲线运动,其瞬时速度为,瞬时速率为,平均速度为,平均速率为,则它们之间的下列四种关系中哪一种是正确的?(A);(B);(C);(D)答:(C)1-2沿直线运动的物体,其速度大小与时间成反比,则其加速度的大小与速度大小的关系是:(A)与速度大小成正比;(B)与速度大小平方成正比;(C)与速度大小成反比;(D)与速度大小平方成反比。答:B1-3如图所示为A,B两个质点在同一直线上运动的图像,由图可知(A)两个质点一定从同一位置出发(B)两个质点都始终作匀加速运动(C)在末两个质点相遇(D)在时间内质点B可能领先质点A答:D1-4质点的关系如图,图中,三条线表示三个速度不同的运动问它们属于什么类型的运动?哪一个速度大?哪一个速度小? 答:匀速直线运动;。1-5如图所示,两船和相距,分别以速度和匀速直线行驶,它们会不会相碰?若不相碰,求两船相靠最近的距离图中和为已知。答:方法一:如图,以A船为参考系,在该参考系中船A是静止的,而船B的速度。是船B相对于船A的速度,从船B作一条平行于方向的直线BC,它不与船A相交,这表明两船不会相碰.由A作BC垂线AC,其长度就是两船相靠最近的距离 作FD/AB,构成直角三角形DEF,故有:,在三角形BEF中,由余弦定理可得:。方法二:两船在任一时刻的位置矢量分别为: 任一时刻两船的距离为:令:。1-6若质点限于在平面上运动,试指出符合下列条件的各应是什么样的运动? (A),;(B),;(C),答:(1) 质点作圆周运动; (2) 质点作匀速率曲线运动; (3) 质点作抛体运动。1-7如图所示,质点在t=0时刻由原点出发作斜抛运动,其速度,回到x轴的时刻为t,则(A) (B)(C) (D)答:A (注意:题目中各处的v 应为矢量!须加上箭头。)1-8一质点作斜抛运动,用代表落地时,(1)说明下面三个积分的意义:;(2)用和代表抛出点和落地点位置,说明下面三个积分的意义:。答: 表示物体落地时x方向的距离, 表示物体落地时y方向的距离, 表示物体在时间内走过的几何路程, 抛出点到落地点的位移, 抛出点到落地点位移的大小, 抛出点到落地点位移的大小。习题22-1 质量为16kg的质点在平面内运动,受一恒力作用,力的分量为,当时,。当时,求:(1) 质点的位矢;(2) 质点的速度。解:由 ,有:,(1),。于是质点在时的速度:(2)2-2 质量为2kg的质点在xy平面上运动,受到外力的作用,t=0时,它的初速度为,求t=1s时质点的速度及受到的法向力。解:解:由于是在平面运动,所以考虑矢量。由:,有:,两边积分有:,考虑到,有由于在自然坐标系中,而(时),表明在时,切向速度方向就是方向,所以,此时法向的力是方向的,则利用,将代入有,。2-3如图,物体A、B质量相同,B在光滑水平桌面上滑轮与绳的质量以及空气阻力均不计,滑轮与其轴之间的摩擦也不计系统无初速地释放,则物体A下落的加速度是多少? 解:分别对A,B进行受力分析,可知:则可计算得到: 。2-4如图,用质量为的板车运载一质量为的木箱,车板与箱底间的摩擦系数为,车与路面间的滚动摩擦可不计,计算拉车的力为多少才能保证木箱不致滑动? 解法一:根据题意,要使木箱不致于滑动,必须使板车与木箱具有相同的加速度,且上限车板与箱底间为最大摩擦。即:可得:解法二:设木箱不致于滑动的最大拉力为,列式有:联立得:,有:。2-5如图所示一倾角为的斜面放在水平面上,斜面上放一木块,两者间摩擦系数为。为使木块相对斜面静止,求斜面加速度的范围。解法一:在斜面具有不同的加速度的时候,木块将分别具有向上和向下滑动的趋势,这就是加速度的两个范围,由题意,可得:(1)当木块具有向下滑动的趋势时(见图a),列式为: 可计算得到:此时的(2)当木快具有向上滑动的趋势时(见图b),列式为:可计算得到:此时的,所以:。解法二:考虑物体m放在与斜面固连的非惯性系中,将物体m受力沿和方向分解,如图示,同时考虑非惯性力,隔离物块和斜面体,列出木块平衡式:方向:方向:考虑到,有:,解得:。的取值范围:。2-6质量为的子弹以速度水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度。解:(1)由题意,子弹射入沙土中的阻力表达式为:又由牛顿第二定律可得:,则分离变量,可得:,两边同时积分,有:,所以:(2)子弹进入沙土的最大深度也就是的时候子弹的位移,则:考虑到,可推出:,而这个式子两边积分就可以得到位移: 。2-7质量为的物体可以在劈形物体的斜面上无摩擦滑动,劈形物质量为,放置在光滑的水平面上,斜面倾角为,求释放后两物体的加速度及它们的相互作用力。解:利用隔离体方法,设方形物相对于劈形物沿斜面下滑的加速度为,劈形物水平向左的加速度为,分析受力有:方形物受力:,(惯性力);劈形物受力:,如图;对于,有沿斜面平行和垂直的方程为: 对于,有: 将代入有:,代入,有:再将在水平和竖直两方向上分解,有: 而相互作用力:2-8在光滑的水平面上设置一竖直的圆筒,半径为,一小球紧靠圆筒内壁运动,摩擦系数为,在时,球的速率为,求任一时刻球的速率和运动路程。 解:利用自然坐标系,法向:,而: 切向:,则: ,得: 2-9如图,一质点在几个力作用下沿半径为的圆周运动,其中有一恒力N,求质点从A开始沿逆时针方向经3/4圆周到达B的过程中,力所做的功。解:本题为恒力做功,考虑到B的坐标为(,),再利用:,有:(焦耳)2-10质量为m=0.5kg的质点,在xOy坐标平面内运动,其运动方程为x=5t2,y=0.5(SI),从t=2s到t=4s这段时间内,外力对质点的功为多少?解:由功的定义:,题意:,。2-11一质量为的物体,在力的作用下,由静止开始运动,求在任一时刻此力所做功的功率为多少。解:由,要求功率就必须知道力和速度的情况,由题意:所以功率为:。2-12一弹簧并不遵守胡克定律,其弹力与形变的关系为,其中和单位分别为和。(1)计算当将弹簧由拉伸至过程中,外力所做之功;(2)此弹力是否为保守力?解:(1)由做功的定义可知:(2),按保守力的定义:该弹力为保
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号