资源预览内容
第1页 / 共12页
第2页 / 共12页
第3页 / 共12页
第4页 / 共12页
第5页 / 共12页
第6页 / 共12页
第7页 / 共12页
第8页 / 共12页
第9页 / 共12页
第10页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
高考数学最新资料通州区高三年级摸底考试数学(文)试卷1月本试卷分第I卷和第II卷两部分,第I卷第1至第2页,第II卷第3至第4页,共150分考试时间长120分钟考生务必将答案答在答题卡上,在试卷上作答无效考试结束后,将本试卷和答题卡一并交回.第卷 (选择题 共40分)一、选择题(共8小题,每小题5分,共40分)在每小题列出的四个选项中,选出符合题目要求的一项.1已知集合,则(A) (B) (C)(D)2在复平面内,复数对应的点位于 (A)第一象限(B)第二象限(C)第三象限(D)第四象限3已知圆的方程为,则圆心坐标为 (A)(B)(C)(D)4设函数则(A)(B)(C)(D)正(主)视图侧(左)视图俯视图5一个几何体的三视图如图所示,该几何 体的体积是(A)(B)(C)8(D)46执行如图所示的程序框图,输出的值为 (A)(B)(C)(D)开始k=1,S=0k50S=S+2k输出Sk=k+1结束是否7在中,角的对边分别为,则“”是“是等腰三角形”的(A)充分不必要条件 (B)必要不充分条件 (C)充分必要条件 (D)既不充分也不必要条件8已知直线和直线,抛物线上一动点到直线 和直线的距离之和的最小值是(A) (B)(C)(D)第卷 (非选择题 共110分)二、填空题(共6小题,每小题5分,共30分)9. 在等差数列中,若,前5项的和,则10已知满足约束条件则的最大值为11若,则的最小值为12在边长为的等边中,为边上一动点,则的取值范围是 13奇函数的定义域为,若在上单调递减,且,则实数的取值范围是14对任意两个实数,定义若,则的最小值为三、解答题(共6小题,共80分)解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数()求的最小正周期; ()求函数在的最大值和最小值16.(本小题满分14分)如图,在三棱柱ABC-A1B1C1中,CC1底面ABC, AC=BC=2,CC1=4,M是棱CC1上一点()求证:BCAM;()若M,N分别为CC1,AB的中点,求证:CN /平面AB1M17(本小题满分13分)2 1 2 44 3 1 1 1 1 0 2 57 1 0 8 9甲 乙某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔一小时抽一包产品,称其重量(单位:克)是否合格,分别记录抽查数据,获得重量数据茎叶图(如右).()根据样本数据,计算甲、乙两个车间产品重量的均值与方差,并说明哪个车间的产品的重量相对稳定;()若从乙车间6件样品中随机抽取两件,求所抽取两件样品重量之差不超过2克的概率 18.(本小题满分14分)已知椭圆的中心在原点,短半轴的端点到其右焦点的距离为,过焦点F作直线,交椭圆于两点()求这个椭圆的标准方程;()若椭圆上有一点,使四边形AOBC恰好为平行四边形,求直线的斜率19.(本小题满分13分)已知函数()若函数在处有极值为10,求b的值;()若对于任意的,在上单调递增,求b的最小值20.(本小题满分13分)现有一组互不相同且从小到大排列的数据,其中记,作函数,使其图象为逐点依次连接点的折线()求和的值;()设直线的斜率为,判断的大小关系;()证明:当时,通州区20xx 第一学期期末试卷答案 高三数学(文科) 20xx.1第卷(选择题 共40分)一、 选择题题号12345678答案CBCADBAB二、 填空题9 1011121314 三、解答题15解:()由已知,得 2分, 4分所以,即的最小正周期为; 6分()因为,所以 7分于是,当时,即时,取得最大值; 10分当时,即时,取得最小值13分16证明:()因为三棱柱ABC-A1B1C1中CC1平面ABC,所以CC1BC 1分因为AC=BC=2, 所以由勾股定理的逆定理知BCAC 2分又因为ACCC1=C,所以BC平面ACC1A1 4分因为AM平面ACC1A1,所以BCAM 6分()过N作NPBB1交AB1于P,连结MP ,则NPCC1 8分因为M,N分别为CC1, AB中点,所以, 9分因为BB1=CC1,所以NP=CM 10分所以四边形MCNP是平行四边形11分所以CN/MP 12分因为CN平面AB1M,MP平面AB1M, 13分所以CN /平面AB1 M 14分17解:()设甲、乙两个车间产品重量的均值分别为 、,方差分别为 、, 则, 1分 , 2分 , 4分 , 6分由于 ,所以 甲车间的产品的重量相对稳定;7分()从乙车间件样品中随机抽取两件,结果共有15个: 9分设所抽取两件样品重量之差不超过克的事件为A,则事件A共有4个结果: 11分所以 13分18解: ()由已知,可设椭圆方程为, 1分则 , 2分所以, 3分所以椭圆方程为 4分()若直线轴,则平行四边形AOBC中,点C与点O关于直线对称,此时点C坐标为因为 ,所以点C在椭圆外,所以直线与轴不垂直 6分于是,设直线的方程为,点, 7分则 整理得, 8分, 9分所以 10分因为 四边形为平行四边形,所以 , 11分所以 点的坐标为, 12分所以 , 13分解得,所以14分 19解:(), 1分于是,根据题设有 解得 或 3分当时, ,所以函数有极值点; 4分当时,所以函数无极值点 5分所以 6分()法一:对任意,都成立,7分所以对任意,都成立8分因为 ,所以 在上为单调递增函数或为常数函数, 9分所以 对任意都成立, 即 . 11分又,所以当时, 12分所以,所以的最小值为 13分法二:对任意,都成立, 7分即对任意,都成立,即 8分令, 9分当时,于是;10分当时,于是, 11分又,所以 12分综上,的最小值为 13分20()解:, 2分; 4分()解:, 6分因为,所以 8分()证:由于的图象是连接各点的折线,要证明,只需证明9分事实上,当时,下面证明法一:对任何,10分11分 12分所以13分法二:对任何,当时,;10分当时,综上, 13分
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号