资源预览内容
第1页 / 共38页
第2页 / 共38页
第3页 / 共38页
第4页 / 共38页
第5页 / 共38页
第6页 / 共38页
第7页 / 共38页
第8页 / 共38页
第9页 / 共38页
第10页 / 共38页
亲,该文档总共38页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
外文翻译-溢洪道 外文原文OVERFLOW SPILLWAYAn overflow spillway is a section of dam designed to permit water to pass over its crest. Overflow spillways are widely used on gravity, arch, and buttress dams. Some earth dams have a concrete gravity section designed to serve as a spillway. The design of the spillway for tow dams is not usually critical, and a variety of simple crest patterns are used. In the case of large dams it is important that the overflowing water be guided smoothly over the crest with a minimum of turbulence. If the overflowing water breaks contact with the spillway surface, a vacuum will form at the point of separation and cavitations may occur. Cavitations plus the vibration from the alternates making and breaking of contact between the water and the face of the dam may result in serious structural damage.Cavities filled with vapor, air, and other gases will form in a liquid whenever the absolute pressure of the liquid is close to the vapor pressure. This phenomenon, cavitations, is likely to occur where high velocities cause reduced pressure. Such conditions may arise if the walls of a passage are so sharply curved as to cause separation of flow from the boundary. The cavity, on moving downstream, may enter a region where the absolute is much higher. This causes the vapor in the cavity to condense and return to liquid with a resulting implosion, or collapse, extremely high pressure result. Some of the implosive activity will occur at the surfaces of the passage and in the crevices and pores of the boundary material. Under a continual bombardment of these implosions, the surface undergoes fatigue failure and small particles are broken away, giving the surface a spongy appearance. This damaging action of cavitations is called pitting.The ideal spillway would take the form of the underside of the napped of a sharp-crested weir when the flow rate corresponds to the imum design capacity of the spillway. More exact profiles may be found in more extensive treatments of the subject. The reverse curve on the downstream face of the spillway should be smooth and gradual; A radius of about one-fourth of the spillway height has proved satisfactory. Structural design of an ogee spillway is essentially the same as the design of a concrete gravity section. The pressure exerted on the crest of the spillway by the flowing water and the drag forces caused by fluid friction are usually small in comparison with the other forces acting on the section. The change in momentum of the flow in the vicinity of the reverse curve may, however, create a force which must be considered. The requirements of the ogee shape usually necessitate a thicker section than the adjacent no overflow sections.A saving of concrete can be effected by providing a projecting corbel on the upstream face to control the flow in outlet conduits through the dam, a corbel will interfere with gate operation.The discharge of an overflow spillway is given by the weir equationWhere Q discharge, or L coefficienth head on the spillway vertical distance from the crest of the spillway to the reservoir level , mThe coefficient varies with the design and head. Experimental models are often used to determine spillway coefficient. End contractions on a spillway reduce the effective length below the actual length L. Square-cornered piers disturb the flow considerably and reduce the effective length by the width of the piers plus about 0.2h for each pier.Streamlining the piers or flaring the spillway entrance minimizes the flow disturbance. If the cross-sectional area of the reservoir just upstream from the spillway is less than five times the area of flow over the spillway, the approach velocity with increase the discharge a noticeable amount. The effect of approach velocity can be accounted for by the equationwhere is the approach velocity. PROPERTIES OF CONCRETE The characteristics of concrete should be considered in relation to the quality for any given construction purpose. The closest practicable approach to perfection in every property of the concrete would result in poor economy under many conditions, and the most desirable structure is that in which the concrete has been designed with the correct emphasis on each of the various properties of the concrete, and not solely with a view to obtaining, say, the imum possible strength. Although the attainment of the imum strength should not be the sole criterion in design, the measurement of the crushing strength of concrete cubes or cylinders provides a means of maintaining a uniform standard of quality, and, in fact, is the usual way of doing so. Since the other properties of any particular mix of concrete are related to the crushing strength in some manner, it is possible that as a single control test it is still the most convenient and informative.The testing of the hardened concrete in prefabricated units presents no difficul
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号