资源预览内容
第1页 / 共20页
第2页 / 共20页
第3页 / 共20页
第4页 / 共20页
第5页 / 共20页
第6页 / 共20页
第7页 / 共20页
第8页 / 共20页
第9页 / 共20页
第10页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
英语原文A Unified Approach to Project ManagementThomas Froese* and Sheryl Staub-French*Dept. of Civil Engineering, Univ. of British Columbia, Vancouver, BC, Canada, V6T 1Z4. e-mail: 1tfroesecivil.ubc.ca, 2sherylsfcivil.ubc.caAbstractIn current project management practice, the overall task of designing, managing, and constructing a building is carried out by organizing the work into many distinct tasks assigned to many different groups. Most project effort is then directed towards carrying out these tasks in the most effective manner possible, while relatively little effort (concentrated within a few critical positions) is focused on managing the interdependencies between tasks and effectively combining these results to yield the overall result. We propose a unified approach to project management that brings an integrative view to the forefront, centered on the notion of defining multiple views of the project and the interrelationships that exist between the views. This integrated representation acts as a model or prototype of the physical facility, allowing more experimentation and optimization and providing a unifying focus for the ongoing work. The representational framework, proposed methodology, and accompanying IT issues for this approach to project management are discussed.MotivationMuch of our previous research has been in the area of information technologies (IT) applied to the task of project management (PM) in the field of architecture, engineering, construction, and facilities management (AEC/FM). Within this field of research and development (R&D), a major theme has been the integration of information resources and tools throughout the AEC/FM project lifecycle. Great progress has been made in the concepts, technologies, and tools to support this integration. As of yet, however, the results have had minimal impact on practice in the industry. This situation begs the question of why this active area of R&D has not had greater impact. One significant problem seems to be that the resulting technologies and tools do not fit particularly well with current project management practices. More specifically, the new tools assume and require a level of integration and coordination among project participants that is seldom found in practice. Clearly, the technologies require further development towards tools that better suit current practice. Yet it may be useful to also consider current project management practices to see if changes could be introduced that would allow projects to better exploit the advances that have been made in IT. From this initial perspective of IT, we have begun to explore potential weakness and opportunities for improvement in current project management practices. In the process, the perspective has broadened to identify several issues that are not specifically IT related. These are not new concepts, but a collection of several current trends in AEC/FM and relevant ideas from other industries. In this paper, we consider several of these views on weakness in current project management practices and opportunities for improvements. We then synthesize these into a proposed framework for a unified approach to project management in AEC/FM. Perspectives on Weaknesses and Opportunities for Project Management Complexity and Interdependencies in AEC/FM projects. AEC/FM projects are often described as large and increasingly complex. A greater understanding of the nature of this complexity can point to the areas where the need for improved management is greatest.Studies have identified the following characteristics as generally common to anytype of complex system1 Paraphrased from Homer-Dixon 2001, pp.110-114.:1. Complex systems are comprised of a multiplicity of things; they have a large number of entities or parts. Generally, the more parts a system contains, the more complex it is.2. Complex systems contain a dense web of causal connections among their components. The parts affect each other in many ways.3. Complex systems exhibit interdependence of their components. The behavior of parts is dependant upon other parts. If the system is broken apart, the components no longer function (like the parts of the human body).4. Complex systems are open to their outside environments. They are not selfcontained, but are affected by outside events.5. Complex systems normally show a high degree of synergy among their components: the whole is more than the sum of its parts.6. Complex systems exhibit non-linear behavior. A change in the system can produce an effect that is not proportional to its size: small changes can produce large effects, and large changes can produce small effects. To some extent, all of these features can be observed in AEC/FM projects. AEC/FM projects are made up of components such as the physical elements in a building, thedesign or construction activities, the people and resources utilized, etc. In many cases, the individual components ar
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号