资源预览内容
第1页 / 共64页
第2页 / 共64页
第3页 / 共64页
第4页 / 共64页
第5页 / 共64页
第6页 / 共64页
第7页 / 共64页
第8页 / 共64页
第9页 / 共64页
第10页 / 共64页
亲,该文档总共64页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
双闭环晶闸管不可逆直流调速系统许多生产机械要求在一定的围进行速度的平滑调节,并且要求具有良好的稳态、动态性能。而直流调速系统调速围广、静差率小、稳定性好以与具有良好的动态性能,在高性能的拖动技术领域中,相当长时期几乎都采用直流电力拖动系统。双闭环直流调速系统是直流调速控制系统中发展得最为成熟,应用非常广泛的电力传动系统。它具有动态响应快、抗干扰能力强等优点。采用转速负反馈和PI调节器的单闭环的调速系统可以再保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,例如要求起制动、突加负载动态速降小等等,单闭环系统就难以满足要求。在实际工作中,我们希望在电机最大电流限制的条件下,充分利用电机的允许过载能力,最好是在过度过程中始终保持电流(转矩)为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。这时,启动电流成方波形,而转速是线性增长的。这是在最大电流转矩的条件下调速系统所能得到的最快的启动过程。按电机的类型不同,电气传动又分交流调速和直流调速。直流调速是指人为地或自动地改变直流电动机的转速,以满足工作机械的要求。从机械特性上看,就是通过改变电动机的参数或外加工电压等方法来改变电动机的机械特性,从而改变电动机机械特性和工作特性机械特性的交点,使电动机的稳定运转速度发生变化。直流电动机具有良好的起、制动性能,宜于在广泛围平滑调速,在轧钢机、矿井卷扬机、挖掘机、海洋钻机、金属切削机床、造纸机、高层电梯等需要高性能可控电力拖动的领域中得到了广泛的应用。近年来,交流调速系统发展很快,然而直流拖动系统无论在理论上和实践上都比较成熟,并且从反馈闭环控制的角度来看,它又是交流拖动控制系统的基础,所以直流调速系统在生产生活中有着举足轻重的作用。另一方面,需要指出的是电气传动与自动控制有着密切的关系。调速传动的控制装置主要是各种电力电子变流器,它为电动机提供可控的直流或交流电流,并成为弱电控制强电的媒介。可以说,电力电子技术的进步是电气传动调速系统发展的有力地推动。把这两者结合起来研究直流调速系统,更有利于对直流调速系统的全面认识.双闭环直流调速系统的工作原理1.双闭环直流调速系统的介绍双闭环(转速环、电流环)直流调速系统是一种当前应用广泛,经济,适用的电力传动系统。它具有动态响应快、抗干扰能力强的优点。我们知道反馈闭环控制系统具有良好的抗扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,例如要求起制动、突加负载动态速降小等等,单闭环系统就难以满足要求。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程的电流或转矩。在单闭环系统中,只有电流截止负反馈环节是专门用来控制电流的。但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。带电流截止负反馈的单闭环调速系统起动时的电流和转速波形如图1-(a)所示。当电流从最大值降低下来以后,电机转矩也随之减小,因而加速过程必然拖长。在实际工作中,我们希望在电机最大电流(转矩)受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流(转矩)为允许最大值,使电力拖动系统尽可能用最大的加速度起动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。这样的理想起动过程波形如图1-(b)所示,这时,启动电流成方波形,而转速是线性增长的。这是在最大电流(转矩)受限的条件下调速系统所能得到的最快的起动过程。IdLntIdOIdmIdLntIdOIdmIdcrnn(a)(b)(a)带电流截止负反馈的单闭环调速系统起动过程 (b)理想快速起动过程图1 调速系统起动过程的电流和转速波形实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么采用电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不再靠电流负反馈发挥主作用,因此我们采用双闭环调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。2.双闭环直流调速系统的组成为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串级连接,如图2所示,即把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置。从闭环结构上看,电流调节环在里面,叫做环;转速环在外面,叫做外环。这样就形成了转速、电流双闭环调速系统。该双闭环调速系统的两个调节器ASR和ACR一般都采用PI调节器。因为PI调节器作为校正装置既可以保证系统的稳态精度,使系统在稳态运行时得到无静差调速,又能提高系统的稳定性;作为控制器时又能兼顾快速响应和消除静差两方面的要求。一般的调速系统要求以稳和准为主,采用PI调节器便能保证系统获得良好的静态和动态性能。图2 转速、电流双闭环直流调速系统图中U*n、Un转速给定电压和转速反馈电压U*i、Ui电流给定电压和电流反馈电压 ASR转速调节器 ACR电流调节器 TG测速发电机 TA电流互感器 UPE电力电子变换器3双闭环直流调速系统的稳太结构图和静特性首先要画出双闭环直流系统的稳态结构图如图3所示,分析双闭环调速系统静特性的关键是掌握PI调节器的稳太特征。一般存在两种状况:饱和输出达到限幅值;不饱和输出未达到限幅值。当调节器饱和时,输出为恒值,输入量的变化不再影响输出,相当与使该调节环开环。当调节器不饱和时,PI作用使输入偏差电压在稳太时总是为零。图3Ks a 1/CeU*nUctIdEnUd0Un+-ASR+U*i-IdR R b ACR-UiUPE实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对静特性来说,只有转速调节器饱和与不饱和两种情况。4. 双闭环直流调速系统两个调节器的作用1) 转速调节器的作用使转速n跟随给定电压变化,当偏差电压为零时,实现稳态无静差;对负载变化起抗扰作用;其输出限幅值决定允许的最大电流。2)电流调节器的作用在转速调节过程中,使电流跟随其给定电压变化;对电网电压波动起与时抗扰作用;起动时保证获得允许的最大电流,使系统获得最大加速度起动;当电机过载甚至于堵转时,限制电枢电流的最大值,从而起大快速的安全保护作用。当故障消失时,系统能够自动恢复正常。双闭环直流调速系统突加给定电压由静止状态启动时,转速和电流的动态过程如仿真波形所示。由于在启动过程中转速调节器ASR经历了不饱和、饱和、退饱和三个阶段,即电流上升阶段、恒流升速阶段和转速调节阶段。从启动时间上看,第二阶段恒流升速是主要的阶段,因此双闭环系统基本上实现了电流受限制下的快速启动,利用了饱和非线性控制方法,达到“准时间最优控制”。带PI调节器的双闭环调速系统还有一个特点,就是转速必超调。在双闭环调速系统中,ASR的作用是对转速的抗扰调节并使之在稳态是无静差,其输出限幅决定允许的最大电流。ACR的作用是电流跟随,过流自动保护和与时抑制电压的波动。通过仿真可知:启动时,让转速外环饱和不起作用,电流环起主要作用,调节启动电流保持最大,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流环跟随电流外环调节电机的电枢电流以平衡负载电流。 / 摘 要直流调速系统具有调速围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。本文从直流电动机的工作原理入手,建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理与其静态和动态性能。然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。在理论分析和仿真研究的基础上,本文设计了一套实验用双闭环直流调速系统,详细介绍了系统主电路、反馈电路、触发电路与控制电路的具体实现。对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。采用MATLAB软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行.关键词 直流电机 直流调速系统 速度调节器 电流调节器 双闭环系统 仿真目 录摘要IAbstractII第一章绪论11.1 直流调速概念11.2 直流调速系统的发展史11.3 研究双闭环直流调速系统的目的和意义21.4 本文的研究容3第二章直流调速系统42.1 直流调速系统的调速原理与性能指标42.1.1 直流调速系统的调速原理42.1.2 直流调速系统的性能指标42.1.3 动态性能指标62.2 电流、转速双闭环直流调速系统的理论分析82.2.1 双闭环调速的工作过程和原理82.2.2 双闭环直流调速系统的组成与其静特性82.3 双闭环直流调速系统的数学模型和动态性能分析112.3.1 双闭环直流调速系统的数学模型的建立112.3.2 起动过程分析122.3.3 动态抗干扰性分析152.4 调节器的工程设计方法152.4.1 PI调节器152.4.2 调节器的设计方法162.4.3 型系统与型系统的性能比较162.4.4 转速-电流调节器结构的确定172.5 电流环、速度环的设计182.5.1 转速调节器、电流调节器在双闭环直流调速系统中的作用182.5.2 调节器的具体设计18第三章 PWM脉宽调制223.1 PWM基本介绍223.2 脉宽调制变换器223.3 桥式可逆PWM变换器23第四章直流电动机数学模型的建立264.1 数学模型的建立264.1.1 写出平衡方程式、拉普拉斯变换264.1.2 动态结构图274.2 本设计中电动机部分的数据采集和计算31第五章双闭环直流调速系统仿真335.1 MATLAB简介335.2 双闭环调速系统的仿真33结论36致37参考文献38附录38第一章 绪 论1.1 直流调速概念直流调速1是指人为地或自动地改变直流电动机的转速,以满足工作机械的要求。从机械特性上看,就是通过改变电动机的参数或外加工电压等方法来改变电动机的机械特性,从而改变电动机机械特性和工作特性机械特性的交点,使电动机的稳定运转速度发生变化。1.2 直流调速系统的发展史直流传动具有良好的调速特性和转矩控制性能,在工业生产中应用较早并沿用至今。早期直流传动采用有接点控制,通过开关设备切换直流电动机电枢或磁场回路电阻实现有级调速。1930年以后出现电机放大器控制的旋转交流机组供电给直流电动机(由交流电动机M和直流发电机G构成,简称GM系统),以后又出现了磁放大器和汞弧整流器供电等,实现了直流传动的无接点控制
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号