资源预览内容
第1页 / 共39页
第2页 / 共39页
第3页 / 共39页
第4页 / 共39页
第5页 / 共39页
第6页 / 共39页
第7页 / 共39页
第8页 / 共39页
第9页 / 共39页
第10页 / 共39页
亲,该文档总共39页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第一部分 2016高考试题 立体几何1. 【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是( )(A) (B) (C) (D)【答案】A【解析】试题分析:该几何体直观图如图所示:是一个球被切掉左上角的,设球的半径为,则,解得,所以它的表面积是的球面面积和三个扇形面积之和故选A考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.2.【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A) (B) (C) (D)【答案】C考点: 三视图,空间几何体的体积.【名师点睛】由三视图还原几何体的方法:3.【2016年高考北京理数】某三棱锥的三视图如图所示,则该三棱锥的体积为()A. B. C.D.【答案】A【解析】试题分析:分析三视图可知,该几何体为一三棱锥,其体积,故选A.考点:1.三视图;2.空间几何体体积计算.【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:三视图为三个三角形,对应的几何体为三棱锥;三视图为两个三角形,一个四边形,对应的几何体为四棱锥;三视图为两个三角形,一个圆,对应的几何体为圆锥;三视图为一个三角形,两个四边形,对应的几何体为三棱柱;三视图为三个四边形,对应的几何体为四棱柱;三视图为两个四边形,一个圆,对应的几何体为圆柱.4.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A) (B) (C)90 (D)81【答案】B【解析】试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积,故选B考点:空间几何体的三视图及表面积【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解5.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A) (B) (C) (D)【答案】C考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等.6.【2016高考浙江理数】已知互相垂直的平面交于直线l.若直线m,n满足 则( )Aml Bmn Cnl Dmn【答案】C【解析】试题分析:由题意知,故选C考点:空间点、线、面的位置关系【思路点睛】解决这类空间点、线、面的位置关系问题,一般是借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系7.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .【答案】考点:三视图,几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图8.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm),则该几何体的表面积是 cm2,体积是 cm3.【答案】 【解析】试题分析:几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为考点:1、三视图;2、空间几何体的表面积与体积【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积9.【2016高考新课标2理数】 是两个平面,是两条直线,有下列四个命题:(1)如果,那么.(2)如果,那么.(3)如果,那么.(4)如果,那么与所成的角和与所成的角相等.其中正确的命题有 (填写所有正确命题的编号)【答案】【解析】试题分析:对于,则的位置关系无法确定,故错误;对于,因为,所以过直线作平面与平面相交于直线,则,因为,故正确;对于,由两个平面平行的性质可知正确;对于,由线面所成角的定义和等角定理可知其正确,故正确的有.考点: 空间中的线面关系.【名师点睛】求解本题应注意在空间中考虑线、面关系.10.【2016高考浙江理数】如图,在ABC中,AB=BC=2,ABC=120.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是 .【答案】故.在中,.由余弦定理可得,所以.过作直线的垂线,垂足为.设则,即,解得.而的面积.设与平面所成角为,则点到平面的距离.故四面体的体积.设,因为,所以.则.(1)当时,有,故.此时,.,因为,所以,函数在上单调递减,故.(2)当时,有,故.此时,.由(1)可知,函数在单调递减,故.综上,四面体的体积的最大值为.考点:1、空间几何体的体积;2、用导数研究函数的最值【思路点睛】先根据已知条件求出四面体的体积,再对的取值范围讨论,用导数研究函数的单调性,进而可得四面体的体积的最大值11.【2016高考新课标1卷】平面过正方体ABCD-A1B1C1D1的顶点A,/平面CB1D1,平面ABCD=m,平面AB B1A1=n,则m、n所成角的正弦值为(A) (B) (C) (D)【答案】A考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.12.【2016高考新课标3理数】在封闭的直三棱柱内有一个体积为的球,若,则的最大值是( )(A)4 (B) (C)6 (D) 【答案】B【解析】试题分析:要使球的体积最大,必须球的半径最大由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值,此时球的体积为,故选B考点:1、三棱柱的内切球;2、球的体积【思维拓展】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解13.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为_m3.【答案】2考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图2三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据14.【2016高考新课标1卷】(本小题满分为12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD, ,且二面角D-AF-E与二面角C-BE-F都是(I)证明:平面ABEF平面EFDC;(II)求二面角E-BC-A的余弦值【答案】(I)见解析(II)【解析】试题分析:(I)先证明平面,结合平面,可得平面平面(II)建立空间坐标系,分别求出平面的法向量及平面的法向量 ,再利用求二面角.由已知,所以平面又平面平面,故,由,可得平面,所以为二面角的平面角,从而可得所以,设是平面的法向量,则,即,所以可取设是平面的法向量,则,同理可取则故二面角的余弦值为考点:垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量解决.15.【2016高考新课标2理数】如图,菱形的对角线与交于点,点分别在上,交于点将沿折到位置,()证明:平面;()求二面角的正弦值【答案】()详见解析;().【解析】试题分析:()证,再证,最后证;()用向量法求解.又,而,所以.(II)如图,以为坐标原点,的方向为轴的正方向,建立空间直角坐标系,则,.设是平面的法向量,则,即,所以可以取.设是平面的法向量,则,即,所以可以取.于是, .因此二面角的正弦值是.考点:线面垂直的判定、二面角. 【名师点睛】证明直线和平面垂直的常用方法有:判定定理;ab,ab;,aa;面面垂直的性质线面垂直的性质,常用来证明线线垂直求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角16.【2016高考山东理数】在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线.(I)已知G,H分别为EC,FB的中点,求证:GH平面ABC;(II)已知EF=FB=AC=,AB=BC.求二面角的余弦值.【答案】()见解析;()【解析】试题分析:()根据线线、面面平行可得与直线GH与平面ABC平行;()立体几何中的角与距离的计算问题,往往可以利用几何法、空间向量方法求解,其中解法一建立空间直角坐标系求解;解法二则是找到为二面角的平面角直接求解.试题解析:(II)解法一:连接,则平面,又且是圆的直径,所以以为坐标原点,建立如图所示的空间直角坐标系,由题意得,过点作于点,所以可得故.设是平面的一个法向量. 由可得可得平面的一个法向量因为平面的一个法向量所以.所以二面角的余弦值为.解法二:连接,过点作于点,则有,又平面,所以FM平面ABC,可得过点作于点,连接,可得,从而为二面角的平面角.又,是圆的直径,所以从而,可得所以二面角的余弦值为.考点:1.平行关系;2. 异面直线所成角的计算.【名师
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号