资源预览内容
第1页 / 共3页
第2页 / 共3页
第3页 / 共3页
亲,该文档总共3页全部预览完了,如果喜欢就下载吧!
资源描述
1.(2013 年第 7 题)若等比数列的前 n 项和为5n + a ,则 a =.2.(2013 年第 13 题)等差数列共有 20 项,其奇数项之和为 130,偶数项之和为 150,则该数列的公差为.3.(2012 年第 9 题)等差数列an的前 n 项和为 Sn ,若 a1 = 1, ak = 19, Sk = 100 ,则 k =.4.(2012 年第 15 题)已知an是等比数列, a1 + a2 + a3 = 1, a6 + a7 + a8 = 32 ,则 a1 + a2 +L+ a9 =.5.(2011 年第 9 题)Sn 是等差数列an的前 n 项和,已知 S3 = -12, S6 = -6 ,则公差 d =.6.(2011 年第 14 题)已知an是等比数列, a1 a2 , a1 + 2a2 = 3a3 = 1,则 a1 =.7.(2010 年第 5 题)1等差数列an中, a1 = 2 ,公差 d = - 2 ,若数列前 N 项的和为 SN = 0 ,则 N =.8.(2010 年第 13 题)an是各项均为正数的等比数列,已知 a3 = 12, a3 + a4 + a5 = 84 ,则 a1 + a2 + a3 =.9.(2009 年第 17 题)an 是等比数列,an 是公差不为零的等差数列,已知 a1 = b1 = 1, a2 = b2 , a3 = b5 ,() 求an 和bn 的通项公式;()设bn 的前项和为Sn ,是否存在正整数n ,使a7 = Sn ;若存在,求出n 。若不存在,说明理由。10.(2008 年第 9 题)Sn 是等比数列的前 n 项和,已知 S2 = 1 ,公比 q = 2 ,则 S4 =.11.(2008 年第 17 题)已知an是等差数列, a1 + a2 = a3 = 6 ,则an的通项公式为 an =.12. (2005 年第 4 题)设等差数列an的前 n 项和为 Sn ,已知 a3 = 16, S3 = 105 ,则 S10 =.13. (2005 年第 22 题)已知数列an 的前 n 项和为 Sn 满足 Sn = 2an - 3n + 5(n = 1, 2, 3,L) 。求() 求a1 , a2 , a3 ;()数列an 的通项公式。14. (2004 年第 7 题)在等差数列an中,若 a3 + a4 + a5 + a6 + a7 = 450 ,则 a2 + a8 =.15. (2004 年第 12 题)已知等比数列的公比为 2,且前 4 项的和为 1,那么前 8 项之和为.16. (2004 年第 20 题)设an 为等比数列,bn 为等差数列,且b1 = 0 ,若数列cn 中,cn = an + bn , c1 = c2 = 1, c3 = 2 ,求数列cn 的前 10 项和。“”“”At the end, Xiao Bian gives you a passage. Minand once said, people who learn to learn are very happy people. In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, life is diligent, nothing can be gained, only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号