资源预览内容
第1页 / 共23页
第2页 / 共23页
第3页 / 共23页
第4页 / 共23页
第5页 / 共23页
第6页 / 共23页
第7页 / 共23页
第8页 / 共23页
第9页 / 共23页
第10页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2020年天泽市十二重点中学高三毕业班联考(二)数学(理)第卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则为( )A. B. C. D. 【答案】A【解析】分析:利用一元二次不等式的解法化简集合和利用绝对值不等式的解法化简集合,从而得到的值.详解:因为集合;集合,所以,故选A.点睛:本题主要考查了一元二次不等式,绝对值不等式的解法以及集合的交集,属于容易题,在解题过程中要注意在求交集时要考虑端点是否可以取到,这是一个易错点,同时将不等式与集合融合,体现了知识点之间的交汇.2.已知x,y满足不等式组,则目标函数的最小值为( )A. 1 B. 2 C. 4 D. 5【答案】B【解析】分析:画出不等式组表示的可行域,平移直线,结合可行域可得直线经过点时取到最小值.详解:画出不等式组表示的可行域,如图,平移直线,设可行域内一点,由图可知,直线经过点时取到最小值,联立,解得, 的最小值为,故选B.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3.一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是( )A. B. C. D. 【答案】D【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案【详解】赋值i1,T0,S0,判断条件成立,执行i1+12,T0+11,S0;判断条件成立,执行i2+13,T1+12,S;判断条件成立,执行i3+14,T2+13,S;判断条件不成立,算法结束,输出S此时i4,44不成立故判断框中应填入的条件是,故选:D【点睛】本题考查程序框图,考查学生的读图能力,是基础题4.已知为实数,直线,则“”是“”的( )A. 充分不必要条件 B. 充要条件 C. 必要不充分条件 D. 既不充分也不必要条件【答案】A【解析】分析:根据直线平行的条件以及充分不必要条件的定义即可判断.详解:直线,若“”,则,解得或,即时,可推出 ,不能推出,故“”是“”的充分不必要条件,故选A.点睛:本题主要考查直线平行的性质以及充分条件与必要条件,属于简单题.高中数学的每个知识点都可以结合充分条件与必要条件考查,要正确解答这类问题,除了熟练掌握各个知识点外,还要注意一下几点:(1)要看清 ,还是 ;(2)“小范围”可以推出“大范围”;(3) 或 成立,不能推出成立,也不能推出成立, 且 成立,即能推出成立,又能推出成立;(4)一定看清楚题文中的条件是大前提还是小前提.5.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是 A. B. C. D. 【答案】D【解析】分析:先根据函数的最小正周期为,求出的值,再由平移后得到为偶函数,可得,进而可得结果.详解:由函数的最小正周期为 ,可得,将的图象向左平移个单位长度,得的图象,平移后图象关于轴对称,故选D.点睛:已知的奇偶性求时,往往结合正弦函数及余弦函数的奇偶性和诱导公式来解答:(1)时, 是奇函数;(2) 时, 是偶函数.6.已知定义在R上的函数,则三个数,则a,b,c之间的大小关系是( )A. B. C. D. 【答案】C【解析】分析:求出的导数,得到函数的在上递增,利用对数函数与指数函数的性质可得,从而比较函数值的大小即可.详解:时,,可得在上递增,由对数函数的性质可得所以,由指数函数的性质可得,由可得,所以,根据函数的单调性可得,故选C.点睛:本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间 );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.7.双曲线C:的左、右焦点分别为,点M,N在双曲线上,且,线段交双曲线C于点Q,则该双曲线的离心率是( )A. B. C. 2 D. 【答案】D【解析】分析:运用双曲线的对称性结合,可设出的坐标,由可得的坐标,再由在双曲线上,满足双曲线的方程,消去参数可得从而可得到双曲线的离心率.详解:由,可得,由,可设,由,可得,可得,由在双曲线上,可得,消去整理可得, ,故选D.点睛:本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而求出的值.8.已知函数定义在上的函数,则下列说法中正确的个数是( )关于x的方程,有个不同的零点对于实数,不等式恒成立在上,方程有5个零点当,时,函数的图象与x轴围成的面积为4A. 0 B. 1 C. 2 D. 3【答案】B【解析】分析:根据函数的表达式,作出函数的图象,利用数形结合分别判断即可.详解:由表达式可知.当时,方程等价为对应方程根的个数为五个,而,故错误;由不等式等价为,在恒成立,作出函数图象如图,由图可知函数图象总在的图象上方,所以不等式恒成立,故正确;由,得,设,则在上,方程有四个零点,故错误;令得,当时,函数的图象与轴围成的图形是一个三角形,其面积为,故错误,故选B.点睛:本题主要通过对多个命题真假的判断,主要综合考查函数的、函数的图象与性质,以及函数的零点与不等式恒成立问题,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.第卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.i为虚数单位,设复数z满足,则z的虚部是_【答案】【解析】分析:直接利用复数的乘法运算,化简复数,然后求出复数的虚部.详解:由,可得,,可得,所以,的虚部是,故答案为点睛:本题主要考查乘法运算以及复数共轭复数的概念,意在考查对复数基本概念与基本运算掌握的熟练程度.10.以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线极坐标方程为,它与曲线,为参数相交于两点A、B,则_【答案】2【解析】分析:先利用直角坐标与极坐标间的关系,将极坐标方程为化成直角坐标方程,再将曲线的参数方程化成普通方程,最后利用直角坐标方程的形式,利用垂径定理及勾股定理,由圆的半径及圆心到直线的距离,即可求出的长.详解:,利用进行化简,为参数),相消去可得圆的方程为:得到圆心,半径为,圆心到直线的距离,线段的长为,故答案为.点睛:本题主要考查点到直线距离公式以及圆的弦长的求法,求圆的弦长有两种方法:一是利用弦长公式,结合韦达定理求解;二是利用半弦长,弦心距,圆半径构成直角三角形,利用勾股定理求解.11.一个几何体的三视图如图所示,则该几何体的体积_【答案】【解析】分析:由三视图可知,该几何体是一个组合体,它由半个圆锥与四分之一球体组成,分别求出圆锥与球体的体积,求和即可.详解:由三视图可知,该几何体是一个组合体,它由半个圆锥与四分之一球体组成,其中,圆锥的底面半径为,高为,体积为;球半径为,体积为,所以,该几何体的体积为,故答案为.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.12.若其中,则的展开式中的系数为_【答案】280【解析】分析:利用微积分基本定理,求得,可得二项展开式通项为令得进而可得结果.详解:因为 ,所以,展开式的通项为令得所以,的展开式中的系数为,故答案为.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.13.已知,二次三项式对于一切实数x恒成立,又,使成立,则的最小值为_【答案】【解析】分析:对于一切实数恒成立,可得;再由,使成立,可得,所以可得,可化为,平方后换元,利用基本不等式可得结果.详解:已知,二次三项式对于一切实数恒成立,且;再由,使成立,可得,令,则(当时,等号成立),所以,的最小值为,故的最小值为,故答案为.点睛:本题主要考查一元二次不等式恒成立问题以及利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).14.已知直角梯形ABCD中,P是腰CD上的动点,则的最小值为_【答案】【解析】分析:以为轴,为原点,过与垂直的直线为轴,建立坐标系,可设,可得,利用二次函数配方法可得结果.详解:以为轴,为原点,过与垂直的直线为轴,建立坐标系,由,可得,在上,可设,则,即的最小值为,故答案为.点睛:本题主要考查向量的坐标运算、向量模的坐标表设计以及利用配方法求最值,属于难题. 若函数为一元二次函数,常采用配方法求函数的最值,其关键在于正确化简为完全平方式,并且一定要先确定其定义域.三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 15.在锐角中,角A,B,C的对边分别为a,b,c,且求角B的大小;已知,的面积为,求边长b的值【答案】(1);(2).【解析】分析:(1)由,利用正弦定理得,结合两角和的正弦公式以及诱导公式可得,进而可得结果;()利用(1),由已知及正弦定理可得 ,结合的面积为,可得 ,由余弦定理可得结果详解:(1)由
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号