资源预览内容
第1页 / 共42页
第2页 / 共42页
第3页 / 共42页
第4页 / 共42页
第5页 / 共42页
第6页 / 共42页
第7页 / 共42页
第8页 / 共42页
第9页 / 共42页
第10页 / 共42页
亲,该文档总共42页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
应用回归分析部分课后习题答案第一章 回归分析概述1.1 变量间统计关系和函数关系的区别是什么?答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另外一个变量的确定关系。1.2 回归分析与相关分析的联系与区别是什么?答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。区别有a.在回归分析中,变量y称为因变量,处在被解释的特殊地位。在相关分析中,变量x和变量y处于平等的地位,即研究变量y与变量x的密切程度与研究变量x与变量y的密切程度是一回事。b.相关分析中所涉及的变量y与变量x全是随机变量。而在回归分析中,因变量y是随机变量,自变量x可以是随机变量也可以是非随机的确定变量。C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。而回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制。1.3 回归模型中随机误差项的意义是什么?答:为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2.xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2.xp是非随机的,观测值xi1.xi2.xip是常数。2.等方差及不相关的假定条件为E(i)=0 i=1,2. Cov(i,j)=23.正态分布的假定条件为相互独立。4.样本容量的个数要多于解释变量的个数,即np.1.5 回归变量的设置理论根据是什么?在回归变量设置时应注意哪些问题?答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。应注意的问题有:在选择变量时要注意与一些专门领域的专家合作,不要认为一个回归模型所涉及的变量越多越好,回归变量的确定工作并不能一次完成,需要反复试算,最终找出最合适的一些变量。1.6 收集,整理数据包括哪些内容?答;常用的样本数据分为时间序列数据和横截面数据,因而数据收集的方法主要有按时间顺序统计数据和在同一时间截面上统计数据,在数据的收集中,样本容量的多少一般要与设置的解释变量数目相配套。而数据的整理不仅要把一些变量数据进行折算差分甚至把数据对数化,标准化等有时还需注意剔除个别特别大或特别小的“野值”。1.7 构造回归理论模型的基本依据是什么?答:选择模型的数学形式的主要依据是经济行为理论,根据变量的样本数据作出解释变量与被解释变量之间关系的散点图,并将由散点图显示的变量间的函数关系作为理论模型的数学形式。对同一问题我们可以采用不同的形式进行计算机模拟,对不同的模拟结果,选择较好的一个作为理论模型。1.8 为什么要对回归模型进行检验?答:我们建立回归模型的目的是为了应用它来研究经济问题,但如果马上就用这个模型去预测,控制,分析,显然是不够慎重的,所以我们必须通过检验才能确定这个模型是否真正揭示了被解释变量和解释变量之间的关系。1.9 回归模型有那几个方面的应用?答:回归模型的应用方面主要有:经济变量的因素分析和进行经济预测。1.10 为什么强调运用回归分析研究经济问题要定性分析和定量分析相结合?答:在回归模型的运用中,我们还强调定性分析和定量分析相结合。这是因为数理统计方法只是从事物外在的数量表面上去研究问题,不涉及事物质的规定性,单纯的表面上的数量关系是否反映事物的本质?这本质究竟如何?必须依靠专门的学科研究才能下定论,所以,在经济问题的研究中,我们不能仅凭样本数据估计的结果就不加分析地说长道短,必须把参数估计的结果和具体经济问题以及现实情况紧密结合,这样才能保证回归模型在经济问题研究中的正确应用。第二章 一元线性回归 2.14 解答:(1)散点图为: (2)x与y之间大致呈线性关系。 (3)设回归方程为 =(4) = (5)由于服从自由度为n-2的t分布。因而也即:=可得即为:(2.49,11.5) 服从自由度为n-2的t分布。因而即可得(6)x与y的决定系数(7)ANOVAx平方和df均方F显著性组间(组合)9.00024.5009.000.100线性项加权的8.16718.16716.333.056偏差.8331.8331.667.326组内1.0002.500总数10.0004由于,拒绝,说明回归方程显著,x与y有显著的线性关系。(8) 其中 接受原假设认为显著不为0,因变量y对自变量x的一元线性回归成立。(9)相关系数 =小于表中的相应值同时大于表中的相应值,x与y有显著的线性关系.(10) 序号111064221013-33320200442027-75540346残差图为:从图上看,残差是围绕e=0随机波动,从而模型的基本假定是满足的。(11)当广告费=4.2万元时,销售收入,即(17.1,39.7)2.15 解答:(1) 散点图为:(2)x与y之间大致呈线性关系。(3)设回归方程为 =(4) =0.23050.4801(5) 由于服从自由度为n-2的t分布。因而也即:=可得即为:(0.0028,0.0044) 服从自由度为n-2的t分布。因而即可得(6)x与y的决定系数 =0.908(7) ANOVAx平方和df均方F显著性组间(组合)1231497.5007175928.2145.302.168线性项加权的1168713.03611168713.03635.222.027偏差62784.464610464.077.315.885组内66362.500233181.250总数1297860.0009由于,拒绝,说明回归方程显著,x与y有显著的线性关系。(8) 其中 接受原假设认为显著不为0,因变量y对自变量x的一元线性回归成立。(9) 相关系数 =小于表中的相应值同时大于表中的相应值,x与y有显著的线性关系.(10)序号1825353.07680.4232221510.88080.11923107043.95880.0412455022.0868-0.0868548011.8348-0.8348692033.4188-0.4188713504.54.9688-0.466883251.51.27680.2232967032.51880.481210121554.48080.5192从图上看,残差是围绕e=0随机波动,从而模型的基本假定是满足的。(11)(12),即为(2.7,4.7)近似置信区间为:,即(2.74,4.66)(13)可得置信水平为为,即为(3.33,4.07).2.16 (1)散点图为:可以用直线回归描述y与x之间的关系.(2)回归方程为:(3) 从图上可看出,检验误差项服从正态分布。第三章 多元线性回归3.11 解:(1)用SPSS算出y,x1,x2,x3相关系数矩阵:相关性yx1x2x3Pearson 相关性y1.000.556.731.724x1.5561.000.113.398x2.731.1131.000.547x3.724.398.5471.000 y.048.008.009x1.048.378.127x2.008.378.051x3.009.127.051.Ny10101010x110101010x210101010x310101010所以=系数a模型非标准化系数标准系数tSig.B 的 95.0% 置信区间相关性共线性统计量B标准 误差试用版下限上限零阶偏部分容差VIF1(常量)-348.280176.459-1.974.096-780.06083.500x13.7541.933.3851.942.100-.9778.485.556.621.350.8251.211x27.1012.880.5352.465.049.05314.149.731.709.444.6871.455x312.44710.569.2771.178.284-13.41538.310.724.433.212.5861.708a. 因变量: y(2) 所以三元线性回归方程为模型汇总模型RR 方调整 R 方标准 估计的误差更改统计量R 方更改F 更改df1df2Sig. F 更改1.898a.806.70823.44188.8068.28336.015a. 预测变量: (常量), x3, x1, x2。(3)由于决定系数R方=0.708 R=0.898较大所以认为拟合度较高(4)Anovab模型平方和df均方FSig.1回归13655.37034551.7908.283.015a残差3297.1306549.522总计16952.5009a. 预测变量: (常量), x3, x1, x2。b. 因变量: y因为F=8.283 P=0.0150.05所以认为回归方程在整体上拟合的好(5)系数a模型非标准化系数
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号