资源预览内容
第1页 / 共12页
第2页 / 共12页
第3页 / 共12页
第4页 / 共12页
第5页 / 共12页
第6页 / 共12页
第7页 / 共12页
第8页 / 共12页
第9页 / 共12页
第10页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2013中考全国100份试卷分类汇编分式方程1、(2013年黄石)分式方程的解为A. B. C. D. 答案:D解析:去分母,得:3(x1)2x,即3x32x,解得:x3,经检验x3是原方程的根。2、(2013温州)若分式的值为0,则x的值是()Ax=3Bx=0Cx=3Dx=4考点:分式的值为零的条件分析:根据分式值为零的条件可得x3=0,且x+40,再解即可解答:解:由题意得:x3=0,且x+40,解得:x=3,故选:A点评:此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零注意:“分母不为零”这个条件不能少3、(2013莱芜)方程=0的解为()A2B2C2D考点:解分式方程专题:计算题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解答:解:去分母得:x24=0,解得:x=2或x=2,经检验x=2是增根,分式方程的解为x=2故选A点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根4、(2013滨州)把方程变形为x=2,其依据是()A等式的性质1B等式的性质2C分式的基本性质D不等式的性质1考点:等式的性质分析:根据等式的基本性质,对原式进行分析即可解答:解:把方程变形为x=2,其依据是等式的性质2;故选:B点评:本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立5、(2013益阳)分式方程的解是()Ax=3Bx=3Cx=Dx=考点:解分式方程专题:计算题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解答:解:去分母得:5x=3x6,解得:x=3,经检验x=3是分式方程的解故选B点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根6、(2013山西,6,2分)解分式方程时,去分母后变形为( )A2+(x+2)=3(x-1)B2-x+2=3(x-1)C2-(x+2)=3(1- x)D 2-(x+2)=3(x-1)【答案】D【解析】原方程化为:,去分母时,两边同乘以x1,得:2(x2)3(x1),选D。7、(2013白银)分式方程的解是()Ax=2Bx=1Cx=2Dx=3考点:解分式方程分析:公分母为x(x+3),去括号,转化为整式方程求解,结果要检验解答:解:去分母,得x+3=2x,解得x=3,当x=3时,x(x+3)0,所以,原方程的解为x=3,故选D点评:本题考查了解分式方程(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,(2)解分式方程一定注意要验根8、(2013年河北)甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是ABC D答案:A解析:甲队每天修路xm,则乙队每天修(x10)m,因为甲、乙两队所用的天数相同,所以,选A。9、(2013毕节地区)分式方程的解是()Ax=3BCx=3D无解考点:解分式方程专题:计算题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解答:解:去分母得:3x3=2x,解得:x=3,经检验x=3是分式方程的解故选C点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根10、(2013玉林)方程的解是()Ax=2Bx=1Cx=Dx=2考点:解分式方程专题:计算题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解答:解:去分母得:x+13(x1)=0,去括号得:x+13x+3=0,解得:x=2,经检验x=2是分式方程的解故选A点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根11、(德阳市2013年)已知关于x的方程3的解是正数,则m的取值范围是答案:m6且m4解析:去分母,得:2xm3x6,解得:xm6,因为解为正数,所以,m60,即m6,又x2,所以,m4,因此,m的取值范围为:m6且m412、(2013年潍坊市)方程的根是_.答案:x=0考点:分式方程与一元二次方程的解法.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根13、(2013四川宜宾)分式方程的解为x=1考点:解分式方程专题:计算题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解答:解:去分母得:2x+1=3x,解得:x=1,经检验x=1是分式方程的解故答案为:x=1点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根14、(2013绍兴)分式方程=3的解是x=3考点:解分式方程3718684专题:计算题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解答:解:去分母得:2x=3x3,解得:x=3,经检验x=3是分式方程的解故答案为:x=3点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根15、(2013年临沂)分式方程的解是.答案:解析:去分母,得:2x13x3,解得:x2,经检验x2是原方程的解。16、(2013淮安)方程的解集是x=2考点:解分式方程3718684专题:计算题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解答:解:去分母得:2+x=0,解得:x=2,经检验x=2是分式方程的解故答案为:x=2点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根17、(2013苏州)方程=的解为x=2考点:解分式方程专题:计算题分析:方程两边都乘以最简公分母(x1)(2x+1)把分式方程化为整式方程,求解后进行检验解答:解:方程两边都乘以(x1)(2x+1)得,2x+1=5(x1),解得x=2,检验:当x=2时,(x1)(2x+1)=(21)(22+1)=50,所以,原方程的解是x=2故答案为:x=2点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解(2)解分式方程一定注意要验根18、(2013广安)解方程:1=,则方程的解是x=考点:解分式方程3718684专题:计算题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解答:解:去分母得:4xx+2=3,解得:x=,经检验是分式方程的解故答案为:x=点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根19、(2013常德)分式方程=的解为x=2考点:解分式方程专题:计算题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解答:解:去分母得:3x=x+2,解得:x=2,经检验x=2是分式方程的解故答案为:x=2点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根20、(2013白银)若代数式的值为零,则x=3考点:分式的值为零的条件;解分式方程专题:计算题分析:由题意得=0,解分式方程即可得出答案解答:解:由题意得,=0,解得:x=3,经检验的x=3是原方程的根故答案为:3点评:此题考查了分式值为0的条件,属于基础题,注意分式方程需要检验21、(2013绥化)若关于x的方程=+1无解,则a的值是2考点:分式方程的解分析:把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值解答:解:x2=0,解得:x=2方程去分母,得:ax=4+x2,把x=2代入方程得:2a=4+22,解得:a=2故答案是:2点评:首先根据题意写出a的新方程,然后解出a的值22、(2013牡丹江)若关于x的分式方程的解为正数,那么字母a的取值范围是a1且a2考点:分式方程的解3718684专题:计算题分析:将a看做已知数求出分式方程的解得到x的值,根据解为正数列出不等式,求出不等式的解集即可得到a的范围解答:解:分式方程去分母得:2xa=x1,解得:x=a1,根据题意得:a10且a110,解得:a1且a2故答案为:a1且a2点评:此题考查了分式方程的解,弄清题意是解本题的关键注意分式方程分母不等于023、(2013泰州)解方程:考点:解分式方程分析:观察可得最简公分母是2(x2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解解答:解:原方程即:=,方程两边同时乘以x(x2)得:2(x+1)(x2)x(x+2)=x22,化简得:4x=2,解得:x=,把x=代入x(x2)0,故方程的解是:x=点评:本题考查了分式方程的解法:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解(2)解分式方程一定注意要验根
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号