资源预览内容
第1页 / 共40页
第2页 / 共40页
第3页 / 共40页
第4页 / 共40页
第5页 / 共40页
第6页 / 共40页
第7页 / 共40页
第8页 / 共40页
第9页 / 共40页
第10页 / 共40页
亲,该文档总共40页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
目 录第一章 绪论1.1 纯电动汽车概述1.1.1 电动汽车的分类1.2 驱动桥的概述 1.2.1 驱动桥的功能1.2.2 驱动桥的分类1.2.3 驱动桥的组成1.2.4 驱动桥的设计1.3 电动车出现的背景、意义及国内外纯电动车驱动桥发展现状第二章 传动系统工作原理2.1 轿车采用的传动方案2.2 主减速器的确定2.2.1 电动轿车动力性能要求2.2.2 电机参数和减速器传动比的选择2.2.3 匹配结果2.3 主减速器的结构形式2.3.1 主减速器结构方案分析2.3.2 圆柱齿轮传动的主要参数2.3.3 锥齿轮传动的主要参数2.4 差速器的确定2.4.1 差速器的工能原理2.4.2 差速器的选择2.4.3 差速器主要参数的计算2.5 相关轴及轴承设计2.5.1减速器输入轴2.5.2齿轮中间传动轴2.5.3相关轴承的选择2.5.4键的选择和校核2.5.5轴承的强度校核第三章 毕业设计总结与感想第1章 绪 论1.1纯电动汽车概述1.1.1电动汽车的分类电动汽车在广义上可分为3 类,即纯电动汽车(BEV) 、混合动力电动汽车(HEV) 和燃料电池电动汽车(FCEV)。 纯电动汽车是完全由二次电池(如铅酸电池、镍镉电池、镍氢电池或锂离子电池)提供动力的汽车。目前,这三种汽车都处于不同的研究阶段。由于一次石化能源的日趋缺乏,纯电动汽车被认为是汽车工业的未来。但是车用电池的许多关键技术还在突破,因此,纯电动汽车多用于低速短距离的运输。混合动力车的开发是从燃油汽车到未来纯电动汽车的一种过渡阶段,它既能够满足用户的需求,有具有低油耗、低排放的特点,在目前的技术水平下是最切合市场的,但是混合动力车有两个动力源,在造价和如何匹配控制上还需要继续努力。燃料电池电动汽车才有燃料电池作为能源。燃料电池就是利用氢气和氧气(或空气)在催化剂的作用下直接经电化学反应产生电能的装置,具有无污染,只有水作为排放物的优点。但现阶段,燃料电池的许多关键技术还处于研发试验阶段。1.1.2 纯电动汽车的基本结构电动汽车系统可分为三个子系统,即电力驱动子系统,主能源子系统,辅助控制子系统。采用不同的电力驱动系统可构成不同形式的电动汽车。A由发动机前置前轮驱动的燃油车发展而来,它由电动机、离合器、齿轮箱和差速器组成。其动力传递由电动机输出后,其后的传递路线与传统的汽车很相似,技术比较成熟,应用也比较广泛。B如果采用固定速比的减速箱可以去掉离合器,较少机械传动的质量,缩小其体积。这种结构没有离合器和可选的变速比,需通过电机控制提供理想的转矩/转速特性。C这种与发动机横向前置、前轮驱动的燃油汽车的布置方式类似,它把发动机、固定速比减速器和差速器集成为一个整体,两根半轴连接驱动车轮,这种结构在小型汽车上运用最普遍。E所示的双电动机结构就是采用两个电动机通过固定速比的减速器分别驱动两个车轮,每个电动机的转速可以独立的调节控制,便于实现电子车速,因此,电动汽车不必选用机械差速器。F电动机也可以装在车轮里面,成为轮毂电动机,可以进一步缩短从电动机到驱动车轮的距离。为了将电动机降到理想的车轮转速,可采用固定减速比的行星齿轮变速器,它能提供大的减速比,而且输入和输出轴可以布置在同一条轴线上。这是另一种使用轮毂电动机的电动汽车结构,这种结构采用低速外转子电动机,彻底去掉了机械转速齿轮,电动机的外转子直接安装在车轮的轮缘上1.1 驱动桥的概述 1.2.1驱动桥的功能驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理的分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直立、纵向力和横向力。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。 1.2.2驱动桥的分类:驱动桥分非断开式(整体式)-用于非独立悬架断开式-用于独立悬架非断开式(整体式)驱动桥 定义:非断开式驱动桥也称为整体式驱动桥,其半轴套管与主减速器壳均与轴壳刚性地相连一个整体梁,因而两侧的半轴和驱动轮相关地摆动,通过弹性元件与车架相连。它由驱动桥壳1,主减速器,差速器和半轴组成。 优点:结构简单,成本低,制造工艺性好,维修和调整易行,工作可靠。 用途:广泛载货汽车、客车、多数越野车、部分轿车用于上。断开式驱动桥 定义:驱动桥采用独立悬架,即主减速器壳固定在车架上,两侧的半轴和驱动轮能在横向平面相对于车体有相对运动的则称为断开式驱动桥。为了与独立悬架相配合,将主减速器壳固定在车架(或车身)上,驱动桥壳分段并通过铰链连接,或除主减速器壳外不再有驱动桥壳的其它部分。为了适应驱动轮独立上下跳动的需要,差速器与车轮之间的半轴各段之间用万向节连接。优点:可以增加最小离地间隙,减少部分簧下质量,减少车轮和车桥上的动载两半轴相互独立,抗侧滑能力强可使独立悬架导向机构设计合理,提高操纵稳定性缺点:结构复杂,成本高用途:多用于轻、小型越野车和轿车1.2.3驱动桥的组成驱动桥由主减速器、差速器、半轴及桥壳组成。 主减速器1)主减速器一般用来改变传动方向,降低转速,增大扭矩,保证汽车有足够的驱动力和适当的速皮。主减速器类型较多,有单级、双级、双速、轮边减速器等。单级主减速器由一对减速齿轮实现减速的装置,称为单级减速器。其结构简单,重量轻,东风BQl090型等轻、中型载重汽车上应用广泛。2)双级主减速器对一些载重较大的载重汽车,要求较大的减速比,用单级主减速器传动,则从动齿轮的直径就必须增大,会影响驱动桥的离地间隙,所以采用两次减速。通常称为双级减速器。双级减速器有两组减速齿轮,实现两次减速增扭。 为提高锥形齿轮副的啮合平稳性和强度,第一级减速齿轮副是螺旋锥齿轮。二级齿轮副是斜齿因拄齿轮。主动圆锥齿轮旋转,带动从动圆银齿轮旋转,从而完成一级减速。第二级减速的主动圆柱齿轮与从动圆锥齿轮同轴而一起旋转,并带动从动圆柱齿轮旋转,进行第二级减速。因从动圆柱齿轮安装于差速器外壳上,所以,当从动圆柱齿轮转动时,通过差速器和半轴即驱动车轮转动。2差速器差速器用以连接左右半轴,可使两侧车轮以不同角速度旋转同时传递扭矩。保证车轮的正常滚动。有的多桥驱动的汽车,在分动器内或在贯通式传动的轴间也装有差速器,称为桥间差速器。其作用是在汽车转弯或在不平坦的路面上行驶时,使前后驱动车轮之间产生差速作用。驱动桥两侧的驱动轮若用一根整轴刚性连接,则两轮只能以相同的角速度旋转。这样,当汽车转向行驶时,由于外侧车轮要比内侧车轮移过的距离大,将使外侧车轮在滚动的同时产生滑拖,而内侧车轮在滚动的同时产生滑转。即使是汽车直线行驶,也会因路面不平或虽然路面平直但轮胎滚动半径不等(轮胎制造误差、磨损不同、受载不均或气压不等)而引起车轮的滑动。 车轮滑动时不仅加剧轮胎磨损、增加功率和燃料消耗,还会使汽车转向困难、制动性能变差。为使车轮尽可能不发生滑动,在结构上必须保证各车辆能以不同的角速度转动。通常从动车轮用轴承支承在心轴上,使之能以任何角速度旋转,而驱动车轮分别与两根半轴刚性连接,在两根半轴之间装有差速器。这种差速器又称为轮间差速器。多轴驱动的越野汽车,为使各驱动桥能以不同角速度旋转,以消除各桥上驱动轮的滑动,有的在两驱动桥之间装有轴间差速器。现代汽车上的差速器通常按其工作特性分为齿轮式差速器和防滑差速器两大类。 齿轮式差速器当左右驱动轮存在转速差时,差速器分配给慢转驱动轮的转矩大于快转驱动轮的转矩。这种差速器转矩均分特性能满足汽车在良好路面上正常行驶。但当汽车在坏路上行驶时,却严重影响通过能力。例如当汽车的一个驱动轮陷入泥泞路面时,虽然另一驱动轮在良好路面上,汽车却往往不能前进(俗称打滑)。此时在泥泞路面上的驱动轮原地滑转,在良好路面上的车轮却静止不动。这是因为在泥泞路面上的车轮与路面之间的附着力较小,路面只能通过此轮对半轴作用较小的反作用力矩,因此差速器分配给此轮的转矩也较小,尽管另一驱动轮与良好路面间的附着力较大,但因平均分配转矩的特点,使这一驱动轮也只能分到与滑转驱动轮等量的转矩,以致驱动力不足以克服行驶阻力,汽车不能前进,而动力则消耗在滑转驱动轮上。此时加大油门不仅不能使汽车前进,反而浪费燃油,加速机件磨损,尤其使轮胎磨损加剧。有效的解决办法是:挖掉滑转驱动轮下的稀泥或在此轮下垫干土、碎石、树枝、干草等。为提高汽车在坏路上的通过能力,某些越野汽车及高级轿车上装置防滑差速器。防滑差速器的特点是,当一侧驱动轮在坏路上滑转时,能使大部分甚至全部转矩传给在良好路面上的驱动轮,以充分利用这一驱动轮的附着力来产生足够的驱动力,使汽车顺利起步或继续行驶。3半轴半轴是将差速器传来的扭矩再传给车轮,驱动车轮旋转,推动汽车行驶的实心轴。由于轮毂的安装结构不同,而半轴的受力情况也不同。所以,半轴分为全浮式、半浮式、34浮式三种型式。1) 全浮式半轴一般大、中型汽车均采用全浮式结构。 半轴的内端用花键与差速器的半轴齿轮相连接,半轴的外端锻出凸缘,用螺栓和轮毂连接。轮毂通过两个相距较远的圆锥滚子轴承文承在半轴套管上。半轴套管与后桥壳压配成一体,组成驱动桥壳。用这样的支承形式,半轴与桥壳没有直接联系,使半轴只承受驱动扭矩而不承受任何弯矩,这种半轴称为“全浮式”半轴。所谓“浮”意即半轴不受弯曲载荷。全浮式半轴,外端为凸缘盘与轴制成一体。但也有一些载重汽车把凸缘制成单独零件,并借花键套合在半轴外端。因而,半轴的两端都是花键,可以换头使用。2)半浮式半轴半浮式半轴的内端与全浮式的一样,不承受弯扭。其外端通过一个轴承直接支承在半轴外壳的内侧。这种支承方式将使半轴外端承受弯矩。因此,这种半袖除传递扭矩外,还局部地承受弯矩,故称为半浮式半轴。这种结构型式主要用于小客车。3)34浮式半轴34浮式半轴是受弯短的程度介于半浮式和全浮式之间。此式半轴目前应用不多,只在个别小卧车上应用,如华沙M20型汽车。4桥壳(1)整体式桥壳:整体式桥壳因强度和刚度性能好,便于主减速器的安装、调整和维修,而得到广泛应用。整体式桥壳因制造方法不同,可分为整体铸造式、中段铸造压入钢管式和钢板冲压焊接式等。(2)分段式驱动桥壳:分段式桥壳一般分为两段,由螺栓1将两段连成一体。分段式桥壳比较易于铸造和加工。1.2.4 驱动桥的设计应当满足如下基本要求: 1.选择的主减速比应能保证汽车具有最佳的动力性和燃料经济性。 2.外形尺寸要小,保证有必要的离地间隙。 3.齿轮及其他传动件工作平稳,噪声小。 4.在各种转速和载荷下具有高的传动效率。 5.在保证足够的强度、刚度条件下,应力求质量小,尤其是簧下质量应尽量小,以改善汽车平顺性。 6.与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动相协调。 7.结构简单,加工工艺性好,制造容易,拆装、调整方便。1.3电动车出现的背景、意义以及国内外纯电动车驱动桥发展现状。自1886 年发明了汽车以来,汽车就成为人们日常生活中不可缺少的代步和运输工具,因此缩短了人们之间的距离,改变了人们的生活方式,提高了人们的生活质量.由于汽车要消耗大量的石油资源、排放大量的废气、制造噪音和严重污染环境,因此也带来了无法回避的负面影响。为了是这些问题得到解决,电动汽车呈现出快速发展的趋势。从环保的角度上看,电动汽车是零排放的市区交通工具,即使是计入发电厂增加的排气,总量上来看,它也使空气污染大大的减少;从能源的角度来看,电动汽车是能源的利用多元化和高效化;在改善交通安全和道路使用方面,电动汽车更容易实现智能化。除了在能源、环保和节能方面显示出优越性和具有强大的竞争力外,在车辆性能方面也显示出了巨大的优势。电动汽车的发展使得能源、环
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号