资源预览内容
第1页 / 共16页
第2页 / 共16页
第3页 / 共16页
第4页 / 共16页
第5页 / 共16页
第6页 / 共16页
第7页 / 共16页
第8页 / 共16页
第9页 / 共16页
第10页 / 共16页
亲,该文档总共16页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
.数值计算方法复习试题一、填空题:1、,则A的LU分解为 。答案:3、,则过这三点的二次插值多项式中的系数为 ,拉格朗日插值多项式为 。答案:-1, 4、近似值关于真值有( 2 )位有效数字;5、设可微,求方程的牛顿迭代格式是( );答案6、对,差商( 1 ),( 0 );7、计算方法主要研究( 截断 )误差和( 舍入 )误差;8、用二分法求非线性方程f (x)=0在区间(a,b)内的根时,二分n次后的误差限为( );10、已知f(1)2,f(2)3,f(4)5.9,则二次Newton插值多项式中x2系数为( 0.15 );11、 解线性方程组Ax=b的高斯顺序消元法满足的充要条件为(A的各阶顺序主子式均不为零)。12、 为了使计算 的乘除法次数尽量地少,应将该表达式改写为 ,为了减少舍入误差,应将表达式改写为 。13、 用二分法求方程在区间0,1内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。 14、 求解方程组的高斯塞德尔迭代格式为 ,该迭代格式的迭代矩阵的谱半径= 。15、 设,则 ,的二次牛顿插值多项式为 。16、 求积公式的代数精度以( 高斯型 )求积公式为最高,具有( )次代数精度。21、如果用二分法求方程在区间内的根精确到三位小数,需对分( 10 )次。22、已知是三次样条函数,则=( 3 ),=( 3 ),=( 1 )。23、是以整数点为节点的Lagrange插值基函数,则( 1 ),( ),当时( )。24、25、区间上的三次样条插值函数在上具有直到_2_阶的连续导数。26、改变函数 ()的形式,使计算结果较精确 。27、若用二分法求方程在区间1,2内的根,要求精确到第3位小数,则需要对分 10 次。28、写出求解方程组的Gauss-Seidel迭代公式 ,迭代矩阵为 ,此迭代法是否收敛 收敛 。31、设,则 9 。32、设矩阵的,则 。33、若,则差商 3 。34、线性方程组的最小二乘解为 。36、设矩阵分解为,则 。二、单项选择题:1、 Jacobi迭代法解方程组的必要条件是( C )。 AA的各阶顺序主子式不为零 B C D 2、设,则为( C ) A 2 B 5 C 7 D 34、求解线性方程组Ax=b的LU分解法中,A须满足的条件是( B )。A 对称阵 B 正定矩阵 C 任意阵 D 各阶顺序主子式均不为零 5、舍入误差是( A )产生的误差。A. 只取有限位数 B模型准确值与用数值方法求得的准确值C 观察与测量 D数学模型准确值与实际值 6、3.141580是的有( B )位有效数字的近似值。 A 6 B 5 C 4 D 7 7、用 1+x近似表示ex所产生的误差是( C )误差。A 模型 B 观测 C 截断 D 舍入 8、解线性方程组的主元素消去法中选择主元的目的是( A )。A控制舍入误差 B 减小方法误差C防止计算时溢出 D 简化计算 9、用1+近似表示所产生的误差是( D )误差。 A 舍入 B 观测 C 模型 D 截断 10、-3247500是舍入得到的近似值,它有( C )位有效数字。 A 5 B 6 C 7 D 811、设f (-1)=1,f (0)=3,f (2)=4,则抛物插值多项式中x2的系数为( A )。 A 05 B 05 C 2 D -2 12、三点的高斯型求积公式的代数精度为( C )。 A 3 B 4 C 5 D 213、( D )的3位有效数字是0.236102。(A) 0.0023549103 (B) 2354.82102 (C) 235.418 (D) 235.5410114、用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=j(x),则f(x)=0的根是( B )。(A) y=j(x)与x轴交点的横坐标 (B) y=x与y=j(x)交点的横坐标(C) y=x与x轴的交点的横坐标 (D) y=x与y=j(x)的交点15、用列主元消去法解线性方程组,第1次消元,选择主元为( A ) 。(A) 4 (B) 3 (C) 4 (D)916、拉格朗日插值多项式的余项是( B ),牛顿插值多项式的余项是( C ) 。(A) f(x,x0,x1,x2,xn)(xx1)(xx2)(xxn1)(xxn),(B) (C) f(x,x0,x1,x2,xn)(xx0)(xx1)(xx2)(xxn1)(xxn),(D) 18、用牛顿切线法解方程f(x)=0,选初始值x0满足( A ),则它的解数列xnn=0,1,2,一定收敛到方程f(x)=0的根。19、为求方程x3x21=0在区间1.3,1.6内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是(A )。(A) (B)(C)(D)21、解方程组的简单迭代格式收敛的充要条件是( )。(1), (2) , (3) , (4) 23、有下列数表x00.511.522.5f(x)-2-1.75-10.2524.25所确定的插值多项式的次数是( )。(1)二次; (2)三次; (3)四次; (4)五次25、取计算,下列方法中哪种最好?()(A); (B); (C) ; (D) 。27、由下列数表进行Newton插值,所确定的插值多项式的最高次数是()1.52.53.5-10.52.55.08.011.5(A); (B); (C) ; (D) 。29、计算的Newton迭代格式为( )(A) ;(B);(C) ;(D) 。 30、用二分法求方程在区间内的实根,要求误差限为,则对分次数至少为( ) (A)10; (B)12; (C)8; (D)9。32、设是以为节点的Lagrange插值基函数,则( )(A); (B); (C); (D)。 35、已知方程在附近有根,下列迭代格式中在不收敛的是( )(A); (B); (C); (D)。36、由下列数据012341243-5确定的唯一插值多项式的次数为( )(A) 4; (B)2; (C)1; (D)3。三、是非题(认为正确的在后面的括弧中打,否则打)1、 已知观察值,用最小二乘法求n次拟合多项式时,的次数n可以任意取。 ( )2、 用1-近似表示cosx产生舍入误差。 ( )3、 表示在节点x1的二次(拉格朗日)插值基函数。 ( )4、牛顿插值多项式的优点是在计算时,高一级的插值多项式可利用前一次插值的结果。 ( ) 5、矩阵A=具有严格对角占优。 ( )四、计算题:1、 用高斯-塞德尔方法解方程组 ,取,迭代四次(要求按五位有效数字计算)。答案:迭代格式 k000012.75003.8125 2.537520.20938 3.17893.680530.240432.59973.183940.504202.48203.70192、 已知13452654分别用拉格朗日插值法和牛顿插值法求的三次插值多项式,并求的近似值(保留四位小数)。答案: 差商表为一阶均差二阶均差三阶均差1236245-1-154-10 5、已知-2-101242135求的二次拟合曲线,并求的近似值。答案:解:0-244-816-8161-121-11-22201000003131113342548161020正规方程组为 6、已知区间0.4,0.8的函数表0.4 0.5 0.6 0.7 0.80.38942 0.47943 0.56464 0.64422 0.71736如用二次插值求的近似值,如何选择节点才能使误差最小?并求该近似值。答案:解: 应选三个节点,使误差 尽量小,即应使尽量小,最靠近插值点的三个节点满足上述要求。即取节点最好,实际计算结果, 且 7、构造求解方程的根的迭代格式,讨论其收敛性,并将根求出来,。答案:解:令 .且,故在(0,1)内有唯一实根.将方程变形为 则当时,故迭代格式 收敛。取,计算结果列表如下:n01230.50.035 127 8720.096 424 7850.089 877 325n45670.0
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号