资源预览内容
第1页 / 共33页
第2页 / 共33页
第3页 / 共33页
第4页 / 共33页
第5页 / 共33页
第6页 / 共33页
第7页 / 共33页
第8页 / 共33页
第9页 / 共33页
第10页 / 共33页
亲,该文档总共33页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
一、集合与简易逻辑2001年(1) 设全集,则是( )(A) (B) (C) (D) (2) 命题甲:A=B,命题乙:. 则( )(A) 甲不是乙的充分条件也不是乙的必要条件; (B) 甲是乙的充分必要条件;(C) 甲是乙的必要条件但不是充分条件; (D) 甲是乙的充分条件但不是必要条件。2002年(1) 设集合,集合,则等于( )(A) (B) (C) (D)(2) 设甲:,乙:,则( )(A)甲是乙的充分条件但不是必要条件; (B)甲是乙的必要条件但不是充分条件;(C)甲是乙的充分必要条件; (D)甲不是乙的充分条件也不是乙的必要条件.2003年(1)设集合,集合,则集合M与N的关系是(A) (B) (C) (D)(9)设甲:,且 ;乙:直线与平行。则(A)甲是乙的必要条件但不是乙的充分条件; (B)甲是乙的充分条件但不是乙的必要条件;(C)甲不是乙的充分条件也不是乙的必要条件; (D)甲是乙的充分必要条件。2004年(1)设集合,则集合(A) (B) (C) (D)(2)设甲:四边形ABCD是平行四边形 ;乙:四边形ABCD是平行正方,则(A)甲是乙的充分条件但不是乙的必要条件; (B)甲是乙的必要条件但不是乙的充分条件;(C)甲是乙的充分必要条件; (D)甲不是乙的充分条件也不是乙的必要条件.2005年(1)设集合,则集合(A) (B) (C) (D)(7)设命题甲:,命题乙:直线与直线平行,则(A)甲是乙的必要条件但不是乙的充分条件; (B)甲是乙的充分条件但不是乙的必要条件;(C)甲不是乙的充分条件也不是乙的必要条件; (D)甲是乙的充分必要条件。2006年(1)设集合,则集合(A) (B) (C) (D)(5)设甲:;乙:.(A)甲是乙的充分条件但不是乙的必要条件; (B)甲是乙的必要条件但不是乙的充分条件;(C)甲不是乙的充分条件也不是乙的必要条件; (D)甲是乙的充分必要条件。2007年(8)若为实数,设甲:;乙:,。则(A)甲是乙的必要条件,但不是乙的充分条件; (B)甲是乙的充分条件,但不是乙的必要条件;(C)甲不是乙的充分条件,也不是乙的必要条件; (D)甲是乙的充分必要条件。2008年(1)设集合,则(A) (B) (C) (D)(4)设甲:,则(A)甲是乙的必要条件,但不是乙的充分条件; (B)甲是乙的充分条件,但不是乙的必要条件;(C)甲不是乙的充分条件,也不是乙的必要条件; (D)甲是乙的充分必要条件。二、不等式和不等式组2001年(4) 不等式的解集是( )(A) (B) (C) (D) 2002年(14) 二次不等式的解集为( )(A) (B)(C) (D)2003年(5)、不等式的解集为( )(A) ( B) (C) (D)2004年(5)不等式的解集为(A) (B) (C) (D)2005年(2)不等式的解集为(A) (B) (C) (D)2006年(2)不等式的解集是(A)(B)(C)(D)(9)设,且,则下列不等式中,一定成立的是(A) (B) (C) (D)2007年(9)不等式的解集是(A) (B) (C) (D)2008年(10)不等式的解集是(A) (B) (C) (D)(由)三、指数与对数2001年(6) 设,则的大小关系为( )(A) (B) (C) (D) (是减函数,时,为负;是增函数,时为正.故)2002年(6) 设,则等于( )(A) (B) (C) (D)(10) 已知,则等于( )(A) (B) (C)1 (D)2 (16) 函数的定义域是。2003年(2)函数的反函数为(A) (B) (C) (D)(6)设,则下列不等式成立的是(A) (B) (C) (D)(8)设,则等于(A)10 (B)0.5 (C)2 (D)4 2004年(16) 12 2005年(12)设且,如果,那么(A) (B) (C) (D)2006年(7)下列函数中为偶函数的是(A) (B) (C) (D)(13)对于函数,当时,的取值范围是(A) (B) (C) (D)(14)函数的定义域是(A) (B) (C) (D)(19)-1 2007年(1)函数的定义域为(A)R (B) (C) (D)(2)(A)3 (B)2 (C)1 (D)0(5)的图像过点(A) (B) (C) (D)(15)设,则(A) (B) (C) (D)2008年(3)(A)9 (B)3 (C)2 (D)1(6)下列函数中为奇函数的是(A) (B) (C) (D)(7)下列函数中,函数值恒大于零的是(A) (B) (C) (D)(9)函数的定义域是(A)(0,) (B)(3,) (C)(0,3 (D)(-,3由得,由得,故选(C)(11)若,则(A) (B) (C) (D)四、函数2001年(3) 已知抛物线的对称轴方程为,则这条抛物线的顶点坐标为( )(A) (B) (C) (D) (7) 如果指数函数的图像过点,则的值为( )(A) 2 (B) (C) (D) (10) 使函数为增函数的区间是( )(A) (B) (C) (D) (13)函数是( )(A) 是奇函数 (B) 是偶函数(C) 既是奇函数又是偶函数 (D) 既不是奇函数又不是偶函数(16) 函数的定义域为_。 (21) (本小题11分) 假设两个二次函数的图像关于直线对称,其中一个函数的表达式为,求另一个函数的表达式。解法一 函数的对称轴为,顶点坐标:, 设函数与函数关于对称,则函数的对称轴顶点坐标: , 由得:, 由得: 所以,所求函数的表达式为解法二 函数的对称轴为,所求函数与函数关于对称,则所求函数由函数向轴正向平移个长度单位而得。 设是函数上的一点,点是点的对称点,则 ,将代入得:.即为所求。(22) (本小题11分) 某种图书定价为每本元时,售出总量为本。如果售价上涨%,预计售出总量将减少%,问为何值时这种书的销售总金额最大。解 涨价后单价为元/本,售量为本。设此时销售总金额为,则:,令,得所以,时,销售总金额最大。2002年(9) 若函数在上单调,则使得必为单调函数的区间是( )A B C D(10) 已知,则等于( )(A) (B) (C)1 (D)2 , (13) 下列函数中为偶函数的是( )(A) (B) (C) (D)(21)(本小题12分) 已知二次函数的图像与轴有两个交点,且这两个交点间的距离为2,求的值。解 设两个交点的横坐标分别为和,则和是方程的两个根, 得:,又得:,(22)(本小题12分) 计划建造一个深为,容积为的长方体蓄水池,若池壁每平方米的造价为20元,池底每平方米的造价为40元,问池壁与池底造价之和最低为多少元?解 设池底边长为、,池壁与池底造价的造价之和为,则, 故当,即当时,池壁与池底的造价之和最低且等于: 答:池壁与池底的最低造价之和为22400元2003年(3)下列函数中,偶函数是(A) (B) (C) (D)(10)函数在处的导数为(A)5 (B)2 (C)3 (D)4 (11)的定义域是(A) (B) (C) (D)(17)设函数,则函数(20)(本小题11分) 设,求的值.解 依题意得:, ,(21)(本小题12分) 设满足,求此函数的最大值.解 依题意得:,即,得:,可见,该函数的最大值是8(当时)2004年(10)函数(A)是偶函数 (B)是奇函数 (C)既是奇函数又是偶函数 (D)既不是奇函数也又是偶函数(15),则(A)27 (B)18 (C)16 (D)12(17) -13 ,(20)(本小题满分11分) 设函数为一次函数,求解 依题意设,得,得,(22)(本小题满分12分) 在某块地上种葡萄,若种50株,每株产葡萄;若多种一株,每株减产。试问这块地种多少株葡萄才能使产量达到最大值,并求出这个最大值.解 设种()株葡萄时产量为S,依题意得 , 所以,种60株葡萄时产量达到最大值,这个最大值为3600.2005年(3)设函数,则(A) (B) (C) (D)(6)函数的定义域是(A) (B) (C) (D)(9)下列选项中正确的是(A) 是偶函数 (B) 是奇函数(C) 是偶函数 (D) 是奇函数(18)设函数,且,则的值为 7 注:(23)(本小题满分12分)已知函数的图像交y轴于A点,它的对称轴为;函数的图像交y轴于B点,且交于C.()求的面积()设,求AC的长解()的对称轴方程为:依题意可知各点的坐标为、得:在中,AB边上的高为1(),因此,()当时,点C的坐标为C(1,3),故2006年(4)函数的一个单调区间是(A) (B) (C) (D)(7)下列函数中为偶函数的是(A) (B) (C) (D)(8)设一次函数的图像过点(1,1)和(-2,0),则该函数的解析式为(A) (B) (C) (D
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号