资源预览内容
第1页 / 共89页
第2页 / 共89页
第3页 / 共89页
第4页 / 共89页
第5页 / 共89页
第6页 / 共89页
第7页 / 共89页
第8页 / 共89页
第9页 / 共89页
第10页 / 共89页
亲,该文档总共89页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
常微分方程2.11.,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:3 解:原式可化为: 12解1516解: ,这是齐次方程,令17. 解:原方程化为 令方程组则有令当当另外 19. 已知f(x).解:设f(x)=y, 则原方程化为 两边求导得20.求具有性质 x(t+s)=的函数x(t),已知x(0)存在。解:令t=s=0 x(0)= 若x(0)0 得x=-1矛盾。所以x(0)=0. x(t)=) 两边积分得arctg x(t)=x(0)t+c 所以x(t)=tgx(0)t+c 当t=0时 x(0)=0 故c=0 所以x(t)=tgx(0)t习题2.2求下列方程的解1=解: y=e (e)=e-e()+c=c e- ()是原方程的解。2+3x=e解:原方程可化为:=-3x+e所以:x=e (e e) =e (e+c) =c e+e 是原方程的解。3=-s+解:s=e(e )=e()= e()= 是原方程的解。4 , n为常数.解:原方程可化为: 是原方程的解.5+=解:原方程可化为:=- ()= 是原方程的解.6 解: =+令 则 =u因此:= (*) 将带入 (*)中 得:是原方程的解.13这是n=-1时的伯努利方程。两边同除以,令 P(x)= Q(x)=-1由一阶线性方程的求解公式 =14 两边同乘以 令 这是n=2时的伯努利方程。两边同除以 令 P(x)= Q(x)=由一阶线性方程的求解公式 = =15 这是n=3时的伯努利方程。两边同除以 令 = P(y)=-2y Q(y)= 由一阶线性方程的求解公式 =16 y=+P(x)=1 Q(x)= 由一阶线性方程的求解公式 = =c=1y=17 设函数(t)于t上连续,(0)存在且满足关系式(t+s)=(t)(s)试求此函数。令t=s=0 得(0+0)=(0)(0) 即(0)= 故或(1) 当时 即 ,) (2) 当时 = = =于是 变量分离得 积分 由于,即t=0时 1=c=1故 20.试证: (1)一阶非齐线性方程(2 .28)的任两解之差必为相应的齐线性方程(2.3)之解; (2)若是(2.3)的非零解,而是(2.28)的解,则方程(2.28)的通解可表为,其中为任意常数.(3)方程(2.3)任一解的常数倍或任两解之和(或差)仍是方程(2.3)的解.证明: (2.28) (2.3)(1) 设,是(2.28)的任意两个解则 (1) (2)(1)-(2)得 即是满足方程(2.3)所以,命题成立。(2) 由题意得: (3) (4)1)先证是(2.28)的一个解。于是 得故是(2.28)的一个解。2)现证方程(4)的任一解都可写成的形式设是(2.28)的一个解则 (4)于是 (4)-(4)得从而 即 所以,命题成立。(3) 设,是(2.3)的任意两个解则 (5) (6)于是(5)得 即 其中为任意常数也就是满足方程(2.3)(5)(6)得 即 也就是满足方程(2.3)所以命题成立。21.试建立分别具有下列性质的曲线所满足的微分方程并求解。(5) 曲线上任一点的切线的纵截距等于切点横坐标的平方;(6) 曲线上任一点的切线的纵截距是切点横坐标和纵坐标的等差中项;解:设为曲线上的任一点,则过点曲线的切线方程为从而此切线与两坐标轴的交点坐标为即 横截距为 , 纵截距为 。由题意得:(5) 方程变形为 于是 所以,方程的通解为。(6)方程变形为 于是 所以,方程的通解为。22求解下列方程。(1)解: = = = (2) P(x)= Q(x)=由一阶线性方程的求解公式 = = =习题2.31、验证下列方程是恰当方程,并求出方程的解。1. 解: ,=1 .则所以此方程是恰当方程。凑微分,得 :2 解: , .则 .所以此方程为恰当方程。凑微分,得 3 解: 则 .因此此方程是恰当方程。 (1) (2)对(1)做的积分,则= (3)对(3)做的积分,则=则故此方程的通解为4、 解: , . .则此方程为恰当方程。凑微分,得 :5.(sin-cos+1)dx+( cos- sin+)dy=0解: M=sin-cos+1 N= cos- sin+=- sin-cos- cos+sin=- sin-cos- cos+sin所以,=,故原方程为恰当方程因为sindx-cosdx+dx+ cosdy- sindy+dy=0d(-cos)+d (sin)+dx+d(-)=0所以,d(sin-cos+x -)=0故所求的解为sin-cos+x -=C求下列方程的解:62x(y-1)dx+dy=0解:= 2x , =2x所以,=,故原方程为恰当方程又2xydx-2xdx+dy=0所以,d(y-x)=0故所求的解为y-x=C7.(e+3y)dx+2xydy=0解:edx+3ydx+2xydy=0exdx+3xydx+2xydy=0所以,d e( x-2x+2)+d( xy)=0即d e( x-2x+2)+ xy=0故方程的解为e( x-2x+2)+ xy=C8. 2xydx+( x+1)dy=0解:2xydx+ xdy+dy=0d( xy)+dy=0即d(xy+y)=0故方程的解为xy+y=C9、解:两边同除以 得即,故方程的通解为10、解:方程可化为:即, 故方程的通解为: 即:同时,y=0也是方程的解。11、解:方程可化为: 即:故方程的通解为:12、解:方程可化为:故方程的通解为 : 即:13、解:这里 , 方程有积分因子两边乘以得:方程是恰当方程故方程的通解为:即:14、解:这里因为故方程的通解为: 即:15、解:这里 方程有积分因子: 两边乘以得:方程为恰当方程故通解为 :即:16、解:两边同乘以得:故方程的通解为:17、试导出方程具有形为和的积分因子的充要条件。解:若方程具有为积分因子, (是连续可导)令 , ., , , 方程有积分因子的充要条件是:是的函数,此时,积分因子为 . 令 ,此时的积分因子为18. 设及连续,试证方程为线性方程的充要条件是它有仅依赖于的积分因子.证:必要性 若该方程为线性方程,则有 ,此方程有积分因子,只与有关 .充分性 若该方程有只与有关的积分因子 .则为恰当方程 ,从而 , , .其中 .于是方程可化为即方程为一阶线性方程.20.设函数f(u),g(u)连续、可微且f(u)g(u),,试证方程yf(xy)dx+xg(xy)dy=0有积分因子u=(xyf(xy)-g(xy)证:在方程yf(xy)dx+xg(xy)dy=0两边同乘以u得:uyf(xy)dx+uxg(xy)dy=0则=uf+uy+yf=+-yf=而=ug+ux+xg=+- xg=故=,所以u是方程得一个积分因子21假设方程(2.43)中得函数M(x,y)N(x,y)满足关系=Nf(x)-Mg(y),其中f(x),g(y)分别为x和y得连续函数,试证方程(2.43)有积分因子u=exp(+)证明:M(x,y)dx+N(x,y)dy=0即证u+M=u+Nu(-)=N- Mu(-)=Nef(x)-M eg(y)u(-)=e(Nf(x)-Mg(y)由已知条件上式恒成立,故原命题得证。22、求出伯努利方程的积分因子.解:已知伯努利方程为:两边同乘以,令,线性方程有积分因子:,故原方程的积分因子为:,证毕!23、设是方程的积分因子,从而求得可微函数,使得试证也是方程的积分因子的充要条件是其中是的可微函数。证明:若,则又即为的一个积分因子。24、设是方程的两个积分因子,且常数,求证(任意常数)是方程的通解。证明:因为是方程的积分因子所以 为恰当方程即 ,下面只需证的全微分沿方程恒为零事实上:即当时,是方程的解。证毕!习题 2.4求解下列方程1、解:令,则, 从而, 于是求得方程参数形式得通解为.2、解:令,则,即,从而 ,于是求得方程参数形式得通解为.3、解:令,则,从而 = ,于是求得方程参数形式的通解为,另外,y=0也是方程的解.4、, 为常数解:令,则,从而 ,于是求得方程参数形式的通解为.5、1解:令,则,
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号