资源预览内容
第1页 / 共22页
第2页 / 共22页
第3页 / 共22页
第4页 / 共22页
第5页 / 共22页
第6页 / 共22页
第7页 / 共22页
第8页 / 共22页
第9页 / 共22页
第10页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
摘要人口的数量和结构是影响经济社会发展的重要因素。从20世纪70年代后期以来,我国鼓励晚婚晚育,提倡一对夫妻生育一个孩子。该政策实施30多年来,有效地控制了我国人口的过快增长,对经济发展和人民生活的改善做出了积极的贡献。但另一方面,其负面影响也开始显现。如小学招生人数、高校报名人数逐年下降,劳动人口绝对数量开始步入下降通道,人口抚养比的“拐点”时刻即将到来。这些问题都会对我国的经济和社会健康、可持续发展等产生一系列影响。人口问题日益受到人们的重视。对于问题一,我们通过多个渠道收集数据,利用SAS和Matlab等软件进行计算分析,我们得到了我国上世纪50年代至今人口和经济的主要变化如下:对于问题二,这是典型的人口模型,我们建立了4个相应的数学模型,选用了基于以往人口数据的一次线性回归,灰色、时间序列预测,逻辑斯蒂模型和基于年龄结构并生育率、死亡率随时间Leslie人口模型。进行全方位的深刻讨论,在本文假设的条件下,符合中国人口特点,例如,老龄化进程加速、出生人口性别比持续升高等,对中国的人口未来长期发展状况进行了科学性的预测;通过权重关系,建立起了组合模型,特别地在权重问题上,采用了熵权法分配权重,思路巧妙,提高了预测的精确度;建立BP神经网络模型,无需进行模型假设,同时能利用模型自身对复杂的非线性曲线进行拟核,利用拟核函数对人口增长趋势作出了合的预测。本文的模型具有很好的推广性,而且在其它领域发挥很好的效果。在对中国的人口未来长期发展状况进行了科学性的预测后,我们分析得到计划生育新政策。关键词:微分方程模型;Leslie人口模型;曲线拟合;灰色序列预测中 国 人 口 预 测 模 型摘要本文对人口预测的数学模型进行了研究。首先,建立一次线性回归模型,灰色序列预测模型和逻辑斯蒂模型。考虑到三种模型均具有各自的局限性,又用加权法建立了熵权组合模型,并给出了使预测误差最小的三个预测模型的加权系数,用该模型对人口数量进行预测,得到的结果如下:单位:(万人)年份20062007200820092010预测值134840.9137027.351377785.7139360.4140857.4其中加权系数为:0.24282,0.34055,0.41663。其次,建立Leslie人口模型,充分反映了生育率、死亡率、年龄结构、男女比例等影响人口增长的因素,并利用以1年为分组长度方式和以5年为分组长度方式预测短期和长期人口增长,得如下数据:年份2006200720082009201020112012人数(万)130990131230131430131620131800132000132220年份2016-20202021-20252026-20302031-20352036-20402041-20452046-2050人数(万)144000148000150000150000151000150000149000然后对Leslie人口模型进行了改进,构建了反映生育率和死亡率变化率负指数函数,并给出了反映城乡人口迁移的人口转移向量。最后我们BP神经网络模型检验以上模型的正确性关键字:一次线性回归 灰色序列预测 逻辑斯蒂模型 Leslie人口模型BP神经网络一、问题重述李克强总理代表国务院在2014年政府工作报告中指出:“坚持计划生育基本国策不动摇,落实一方是独生子女的夫妇可生育两个孩子政策。”人口的数量和结构是影响经济社会发展的重要因素。从20世纪70年代后期以来,我国鼓励晚婚晚育,提倡一对夫妻生育一个孩子。该政策实施30多年来,有效地控制了我国人口的过快增长,对经济发展和人民生活的改善做出了积极的贡献。但另一方面,其负面影响也开始显现。如小学招生人数(1995年以来)、高校报名人数(2009年以来)逐年下降,劳动人口绝对数量开始步入下降通道,人口抚养比的“拐点”时刻即将到来。这些问题都会对我国的经济和社会健康、可持续发展等产生一系列影响。为此,根据要求回答下列问题:1.请你们就我国上世纪50年代至今人口和经济的变化做出简要分析。 2.建立关于生育率、死亡率和性别比等多个因素的人口数学模型,分析计划生育新政策(单独二孩政策)对我国未来人口数量,结构及经济的影响;并对模型的结论发表自己的独立见解。二、问题的基本假设及符号说明问题假设1 假设本问题所使用的数据均真实有效,具有统计分析价值。2 假设本问题所研究的是一个封闭系统,也就是说不考虑我国与其它国家的人口迁移问题。3 不考虑战争 瘟疫等突发事件的影响4 在对人口进行分段处理时,假设同一年龄段的人死亡率相同,同一年龄段的育龄妇女生育率相同。5 假设各年龄段的育龄妇女生育率呈正态分布6人类的生育观念不发生太大改变,如没有集体不愿生小孩的想法。7.中国各地各民族的人口政策相同。符号说明-第t时间区间内第i个年龄段人口总数-第t时间区间内第i个年龄段人口总数占总人口的比例-第t时间区间内第i个年龄段中第k年龄值人口总数占总人口的比例-第t时间区间内各年龄段人口总数的向量-第t时间区间各年龄段人口总数向量转移矩阵-第t时间区间内第i个年龄段人的生育率-第t时间区间内第i个年龄段人的死亡率-第t时间区间内第i个年龄段中第k年龄值的死亡率-第t时间区间内第i个年龄段人的存活率- 第t时间区间男性人数与女性人数的比值-第t时间区间内第i个年龄段育龄妇女的生育率m-每个年龄段上年龄值的数目三 问题分析本问题是一个关于人口预测的问题,与以往不同,本问题需要根据中国特殊的国情去研究,我们根据对问题的分析并结合实际情况认为对人口产生主要影响的因素有以下四个:生育率、死亡率、年龄结构、男女比例。在这里需要说明的是对于人口产生影响的一些因素,如经济发展状况,生态环境情况、已婚夫妇对生育所持的态度、医疗技术的发展等,我们认为它们对人口的增长是通过作用于以上四个指标而间接发挥作用的。而对于诸如战争爆发、疾病流行等突发因素,由于其不可预测性,我们不考虑1生育率生育率代表育龄妇女生育人口的能力,从一定意义上讲生育率的高低控制着人口增长率高低,通常来说生育率越高人口增长率越高,所以说生育率是人口增长的源头。生育率的影响因素很多,首先是年龄因素,不同年龄段的育龄妇女的生育率不同,通常20岁至30岁的育龄妇女的生育率最强;此外是地域因素,受政策因素、观念认识、周边环境等影响乡村育龄妇女的生育率高于城市育龄妇女的生育率;还有其它因素的影响,比如大规模疾病会降低育龄妇女的生育率。2死亡率死亡率表示一定时期内一个人口群体中死亡的人数占该人口群体的比值,和生育率一样死亡率的高低同样控制着人口增长率高低,如果说生育率是人口增长的源头,则死亡率是人口增长的汇点。同样影响死亡率的因素很多,首先不同年龄段的死亡率不同,通常老年人和刚出生的婴儿的死亡率较高;从长远来看,随着医疗水平的提高,整个人口群体的死亡率将会成下降趋势;此外一些突发事件,如战争、疾病等,将会使使那一段的人口死亡率大幅度提高。3年龄结构年龄结构反映了总体人口在各年龄段分布情况,年龄结构蕴涵的信息量很大,从其中我们可以实现对很多问题的分析,比如从年龄结构我们可以分析出社会的老年化程度,此外从年龄结构我们可以判断出不同时间段人口出生的情况,比如年龄结构不仅反映了总体人口在各年龄段分布情况,而且考虑到不同年龄段人口生育率、死亡率不同等情况,我们可以在年龄结构中有效反映这些差异4男女比例男女比例反映了总体人口中男性与女性人数的比较关系,男女比例值能反映出体人口中男性与女性人数是否协调,男女比例主要受男女出生比和男女死亡率的影 响,男女出生比正常范围在103107,也就是说出生100个女儿的同时会有103 107个男儿出生,但是在现实社会中,女性死亡率低于男性,以至于男女比例大致维持着稳定的相对稳定,但目前我国男女出生比超过110,这不仅将导致男女比例失调,还会对人口的预测产生影响,所以在人口预测时必须将男女出生死亡比例问题考虑进去。考虑到人口预测分为中短期预测和长期预测,两类预测因为涉及的时间长短不同,所以考虑的因素不同,采用的方法不同。对于中短期预测,我们假设生育率、死亡率、年龄结构、男女比例均维持在同一稳定水平,这样我们采用方法有很多,。 对于长期预测,我们需要考虑生育率、死亡率、年龄结构、男女比例等因素随时间变化,此外城乡人口迁移对城乡人口结构产生影响,尽管以上因素短期内积累效应较小,但在长期中必须考虑。在预测方法上我们选用了基于以往人口数据的一次线性回归,灰色、时间序列预测,逻辑斯蒂模型和基于年龄结构并生育率、死亡率随时间Leslie人口模型出 生 率年龄结构按影响增长因素建立模型型男女比例Leslie人口模型死 亡 率中国人口预测模型按人口统计量建立模型一次线型回归逻 辑 斯 蒂灰 色 预 测熵权法组合模型中短期长 期BP神经网络模型 四 数学模型4.1.熵权组合模型有关于人口增长预测的模型很多,比如灰色GM(1,1),移动平均数法,指数平滑法,一元线型回归,马尔萨斯人口模型,宋健人口模型等等,但是每种预测方法的精度往往也不同。组合模型和单个模型比起来,具有较高的预测精度,组合预测的关键就在于确定各个预测方法的权重。本文将从一个新的角度进行研究,即从信息论的观点出发,根据各个体预测方法误差指标的信息熵,确定组合预测模型的权重,进行人口组合预测模型。本文选用了一元线性回归法,逻辑斯蒂模型法,灰色GM(1,1)模型法对中国人口增长进行预测。而1978至2005年的数据见本文表一。.4.1.1灰色预测模型1.模型建立 灰色系统是指部分信息已知,部分信息未知的系统。灰色系统的理论实质是将无规律的原始数据进行累加生成数列,再重新建模。由于生成的模型得到的数据通过累加生成的逆运算累减生成得到还原模型,再有还原模型作为预测模型。 预测模型,是拟合参数模型,通过原始数据累加生成,得到规律性较强的序列,用函数曲线去拟合得到预测值。灰色预测模型建立过程如下:1) 设原始数据序列有n个观察值,通过累加生成新序列 ,利用新生成的序列去拟和函数曲线。2) 利用拟合出来的函数,求出新生序列的预测值序列 3) 利用累减还原:得到灰色预测值序列: (共nm个,m个为未来的预测值)。将序列分为和,其中反映的确定性增长趋势,反映的平稳周期变化趋势。利用灰色GM(1,1)模型对序列的确定增长趋势进行预测2 模型求解根据2006全国统计年鉴数据整理得到全国历年年度人口统计表如表1.表1:全国历年年底的人口统计年份1978年1980年1985年1989年19
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号