资源预览内容
第1页 / 共13页
第2页 / 共13页
第3页 / 共13页
第4页 / 共13页
第5页 / 共13页
第6页 / 共13页
第7页 / 共13页
第8页 / 共13页
第9页 / 共13页
第10页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
朝阳区2021届高三年级二模考试数学试卷20215(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分考生务必将答案答在答题卡上,在试卷上作答无效考试结束后,将本试卷和答题卡一并交回第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分在每小题列出的四个选项中,选出符合题目要求的一项(1)在复平面内,复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(2)下列函数是奇函数的是(A)(B)(C)(D)(3)已知双曲线的一个焦点为,则双曲线的一条渐近线方程为(A)(B)(C)(D)(4)已知函数()的部分图象如图所示,则的表达式为(A)(B)(C)(D)(5)某四棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该四棱锥的5个面的面积中,最大的是(A)(B)(C)(D)(6)设,则“”是“”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(7)某地对生活垃圾使用填埋和环保两种方式处理该地2020年产生的生活垃圾为20万吨,其中15万吨以填埋方式处理,5万吨以环保方式处理预计每年生活垃圾的总量比前一年增加1万吨,同时,因垃圾处理技术越来越进步,要求从2021年起每年通过环保方式处理的生活垃圾量是前一年的倍,若要使得2024年通过填埋方式处理的生活垃圾量不高于当年生活垃圾总量的50%,则的值至少为(A)(B)(C)(D)(8)若圆上存在点,直线上存在点,使得,则实数的取值范围为(A)(B)(C)(D)(9)集合的所有三个元素的子集记为记为集合中的最大元素,则(A)(B)(C)(D)(10)已知抛物线的焦点到准线的距离为2,点是直线上的动点若点在抛物线上,且,过点作直线的垂线,垂足为,则的最小值为(A)(B)(C)(D)第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分(11)已知向量,且,则_(12)在等差数列中,已知,则_(13)已知,则_(14)已知函数,()若函数是偶函数,则_;若函数存在两个零点,则的一个取值是_(15)“S”型函数是统计分析、生态学、人工智能等领域常见的函数模型,其图象形似英文字母“S”,所以其图象也被称为“S”型曲线某校生物兴趣小组在0.5毫升培养液中放入5个大草履虫,每隔一段时间统计一次大草履虫的数量,经过反复试验得到大草履虫的数量(单位:个)与时间(单位:小时)的关系近似为一个“S”型函数已知函数()的部分图象如图所示,为的导函数给出下列四个结论:对任意,存在,使得;对任意,存在,使得;对任意,存在,使得;对任意,存在,使得其中所有正确结论的序号是_三、解答题共6小题,共85分解答应写出文字说明,演算步骤或证明过程(16)(本小题13分)在中,()求的值;()若,且的面积,求的值(17)(本小题14分)为迎接2022年冬奥会,某地区高一、高二年级学生参加了冬奥知识竞赛为了解知识竞赛成绩优秀(不低于85分)学生的得分情况,从高一、高二这两个年级知识竞赛成绩优秀的学生中分别随机抽取容量为15、20的样本,得分情况统计如下图所示(满分100分,得分均为整数),其中高二年级学生得分按分组()从抽取的高二年级学生样本中随机抽取一人,求其得分不低于90分的概率;()从该地区高二年级参加知识竞赛成绩优秀的学生中随机抽取3人,用频率估计概率,记为取出的3人中得分不低于90分的人数,求的分布列及数学期望;()由于高二年级学生样本原始数据丢失,请根据统计图信息,判断高二年级学生样本得分的最高分至少为多少分时,高二年级学生样本得分的平均分一定超过高一年级学生样本得分的平均分,并说明理由(18)(本小题13分)如图,在三棱柱中,四边形是边长为的正方形,再从条件、条件、条件中选择两个能解决下面问题的条件作为已知,并作答()求证:平面;()求直线与平面所成角的正弦值条件:;条件:;条件:平面平面(19)(本小题15分)已知函数()()当时,求曲线在点处的切线方程;()判断函数的极值点的个数,并说明理由;()若对任意,恒成立,求的取值范围(20)(本小题15分)已知为椭圆的左焦点,直线与椭圆交于不同的两点()当时,求的面积;()设直线分别与直线交于两点,线段的中点分别为,点当变化时,证明三点共线(21)(本小题15分)已知各项均为整数的数列()满足,且对任意,都有记()若,写出一个符合要求的;()证明:数列中存在使得;()若是的整数倍,证明:数列中存在使得参考答案一、选择题(共10小题,每小题4分,共40分)(1)D (2)D (3)B (4)A (5)D(6)A (7)C (8)B (9)C (10)B二、填空题(共5小题,每小题5分,共25分)(11)(12)(13)(14);(答案不唯一)(15)三、解答题(共6小题,共85分)(16)(共13分)解:()因为,所以因为,所以所以7分()因为,由正弦定理得,所以因为的面积为,即,所以所以13分(17)(共14分)解:()设事件:从抽取的高二年级学生样本中随机抽取一人,其得分不低于90分,则所以从抽取的高二年级学生样本中随机抽取一人,其得分不低于90分的概率为4分()由()可知,从该地区高二年级参加知识竞赛成绩优秀的学生中随机抽取1人,其得分不低于分的概率估计为由题意可知,的可能取值为所以;所以的分布列为0123所以的数学期望为10分()由题意可知,高一年级学生样本得分的平均分为设高二年级学生样本得分的最高分为由图可知,要使得高二年级学生样本得分的平均分一定超过高一年级学生样本得分的平均分,只需解得所以当高二年级学生样本得分的最高分至少是分时,高二年级学生样本得分的平均分一定超过高一年级学生样本得分的平均分14分(18)(共13分)解:选择:()因为,所以又因为,所以平面5分()由()知,因为四边形是正方形,所以如图,以为原点建立空间直角坐标系,则,设平面的一个法向量为,则即令,则,所以设直线与平面所成角为,则所以直线与平面所成角的正弦值为13分选择:()因为,,所以又因为平面平面,平面平面,所以平面5分()同上13分(19)(共15分)解:()当时,又,所以所以曲线在点处的切线方程是3分()因为,所以(1)当时,有,令,得当变化时,和的变化情况如下:00极小值所以当时,函数只有一个极值点(2)当时,令,得,当时,当变化时,和的变化情况如下:000极大值极小值所以当时,函数有两个极值点当时,恒成立,所以在上单调递增所以当时,函数无极值点当时,当变化时,和的变化情况如下:000极大值极小值所以当时,函数有两个极值点综上,当时,函数有一个极值点,当或时,函数有两个极值点,当时,函数无极值点10分()(1)若,由()可知,在内单调递减,在内单调递增,所以所以符合题意(2)若,当时,因为,所以又因为,所以不恒成立所以不符合题意综上,的取值范围是15分(20)(共15分)解:()当时,由解得的坐标分别为,则又因为左焦点到直线的距离为,所以的面积为6分()设,由得由判别式,解得所以,所以点的坐标为由题意,直线的斜率,直线的方程为,则点的坐标为同理点的坐标为因为,所以点,所以直线的斜率因为,所以三点共线15分(21)(共15分)解:()(答案不唯一)3分()因为,所以异号假设设因为,所以又因为是有限自然数集,所以可设中的最大数为()令,则因为,所以因为,且为整数,所以因此若数列满足,且对任意,都有,则存在使得若,则数列满足,且对任意,都有,故存在使得,即存在使得综上,数列中存在使得9分()设,则设数列中的最大值为,最小值为因为,所以设在数列中,若,因为,所以设数列,则数列至少有3项因为,且对任意,都有,所以由()可知存在使得(),即若,设数列同理,存在使得(),即综上,若是的整数倍,则数列中存在使得15分第 1 页 共 12 页
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号