资源预览内容
第1页 / 共9页
第2页 / 共9页
第3页 / 共9页
第4页 / 共9页
第5页 / 共9页
第6页 / 共9页
第7页 / 共9页
第8页 / 共9页
第9页 / 共9页
亲,该文档总共9页全部预览完了,如果喜欢就下载吧!
资源描述
(完整)将军饮马模型(终稿)(完整)将军饮马模型(终稿) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)将军饮马模型(终稿))的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为(完整)将军饮马模型(终稿)的全部内容。5将军饮马模型一、背景知识:【传说】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它从此以后,这个被称为“将军饮马”的问题便流传至今【问题原型】将军饮马 造桥选址 费马点【涉及知识】两点之间线段最短,垂线段最短; 三角形两边三边关系; 轴对称 ;平移;【解题思路】找对称点,实现折转直二、将军饮马问题常见模型1.两定一动型:两定点到一动点的距离和最小例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB最小。作法:连接AB,与直线l的交点Q,Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB最小,且最小值等于AB。原理:两点之间线段最短。证明:连接AB,与直线l的交点Q,P为直线l上任意一点,在PAB中,由三角形三边关系可知:AP+PBAB(当且仅当PQ重合时取)例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小.关键:找对称点作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC.原理:两点之间,线段最短证明:连接AC,与直线l的交点Q,P为直线l上任意一点,在PAC中,由三角形三边关系可知:AP+PCAC(当且仅当PQ重合时取)2.两动一定型例3:在MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得BAC周长最短作法:作点A关于OM的对称点A,作点A关于ON的对称点A,连接A A,与OM交于点B,与ON交于点C,连接AB,AC,ABC即为所求原理:两点之间,线段最短例4:在MON的内部有点A和点B,在OM上找一点C,在ON上找一点D,使得四边形ABCD周长最短作法:作点A关于OM的对称点A,作点B关于ON的对称点B,连接A B,与OM交于点C,与ON交于点D,连接AC,BD,AB,四边形ABCD即为所求原理:两点之间,线段最短3。 两定两动型最值例5:已知A、B是两个定点,在定直线l上找两个动点M与N,且MN长度等于定长d(动点M位于动点N左侧),使AM+MN+NB的值最小.提示:存在定长的动点问题一定要考虑平移作法一:将点A向右平移长度d得到点A, 作A关于直线l的对称点A,连接AB,交直线l于点N,将点N向左平移长度d,得到点M。作法二:作点A关于直线l的对称点A1,将点A1向右平移长度d得到点A2,连接A2 B,交直线l于点Q,将点Q向左平移长度d,得到点Q。原理:两点之间,线段最短,最小值为AB+MN例6:(造桥选址)将军每日需骑马从军营出发,去河岸对侧的瞭望台观察敌情,已知河流的宽度为30米,请问,在何地修浮桥,可使得将军每日的行程最短?例6:直线l1l2,在直线l1上找一个点C,直线l2上找一个点D,使得CDl2, 且ACBDCD最短作法:将点A沿CD方向向下平移CD长度d至点A,连接AB,交l2于点D,过点D作DCl2于点C,连接AC则桥CD即为所求此时最小值为AB+CD原理:两点之间,线段最短,4。 垂线段最短型例7:在MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得ABBC最短原理:垂线段最短点A是定点,OM,ON是定线,点B、点C是OM、ON上要找的点,是动点作法:作点A关于OM的对称点A,过点A作ACON,交OM于点B,B、C即为所求.例8:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之差最小,即PAPB最小.作法:连接AB,作AB的中垂线与l的交点,即为所求点P此时|PAPB =0原理:线段垂直平分线上的点到线段两端的距离相等例9:在定直线l上找一个动点C,使动点C到两个定点A与B的距离之差最大,即PAPB 最大作法:延长BA交l于点C,点C即为所求,即点B、A、C三点共线时,最大值为AB的长度。原理:三角形任意两边之差小于第三边例10:在定直线l上找一个动点C,使动点C到两个定点A与B的距离之差最大,即|PA-PB最大作法:作点B关于l的对称点B,连接AB,交交l于点P即为所求,最大值为AB的长度。原理:三角形任意两边之差小于第三边典型例题 三角形1如图,在等边ABC中,AB = 6,ADBC,E是AC上的一点,M是AD上的一点,且AE = 2,求EM+EC的最小值解:点C关于直线AD的对称点是点B,连接BE,交AD于点M,则ME+MD最小,过点B作BHAC于点H,则EH = AH AE = 3 2 = 1,BH = = = 3在直角BHE中,BE = = = 2
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号