资源预览内容
第1页 / 共11页
第2页 / 共11页
第3页 / 共11页
第4页 / 共11页
第5页 / 共11页
第6页 / 共11页
第7页 / 共11页
第8页 / 共11页
第9页 / 共11页
第10页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
传播优秀Word版文档 ,希望对您有帮助,可双击去除!高一必修二经典立体几何专项练习题空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内 有无数个公共点(2)直线与平面相交 有且只有一个公共点(3)直线在平面平行 没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a 来表示a a=A a2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。简记为:线线平行,则线面平行。符号表示:a b = aab2.2.2 平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。符号表示: = 2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行。2.2.3 2.2.4直线与平面、平面与平面平行的性质1、直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。简记为:线面平行则线线平行。符号表示:a a ab= b作用:利用该定理可解决直线间的平行问题。2、两个平面平行的性质定理:如果两个平行的平面同时与第三个平面相交,那么它们的交线平行。符号表示:= =作用:可以由平面与平面平行得出直线与直线平行2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定1、定义:如果直线L与平面内的任意一条直线都垂直,我们就说直线L与平面互相垂直,记作L,直线L叫做平面的垂线,平面叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。 P a L2、直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。注意点: a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。2.3.2平面与平面垂直的判定1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形A 梭 l B2、二面角的记法:二面角-l-或-AB-3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。2.3.3 2.3.4直线与平面、平面与平面垂直的性质1、直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行。2、两个平面垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。DABCOEP17(本题15分)如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点求证:(1)PA平面BDE;(2)平面PAC平面BDE16(本题10分)如图所示,在直三棱柱中,、分别为、的中点.()求证:;()求证:.18(本题12分)已知四棱锥P-ABCD,底面ABCD是、边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点(1)证明:DN/平面PMB;(2)证明:平面PMB平面PAD;(3)求点A到平面PMB的距离16(本题10分)如图所示,在直三棱柱中,、分别为、的中点.()求证:;()求证:.解析:()在直三棱柱中,侧面底面,且侧面底面=,=90,即,平面 平面,.2分,是正方形,. 4分()取的中点,连、. 5分在中,、是中点,,,又,,,,6分故四边形是平行四边形,8分而 面,平面,面 10分18(本题12分)已知四棱锥P-ABCD,底面ABCD是、边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点 (1)证明:DN/平面PMB; (2)证明:平面PMB平面PAD; (3)求点A到平面PMB的距离解析:(1)证明:取PB中点Q,连结MQ、NQ,因为M、N分别是棱AD、PC中点,所以 QN/BC/MD,且QN=MD,于是DN/MQ. 4分(2) 又因为底面ABCD是,边长为的菱形,且M为中点,所以.又所以.8分 (3)因为M是AD中点,所以点A与D到平面PMB等距离.过点D作于H,由(2)平面PMB平面PAD,所以 故DH是点D到平面PMB的距离.17(本题15分)证明(1)O是AC的中点,E是PC的中点,OEAP, 4分又OE平面BDE,PA平面BDE,PA平面BDE 7分(2)PO底面ABCD,POBD, 10分 又ACBD,且ACPO=OBD平面PAC,而BD平面BDE, 13分平面PAC平面BDE 15分()当点为对角线的中点时,点的坐标是因为点在线段上,设当时,的最小值为,即点在棱的中点时,有最小值()因为在对角线上运动是定点,所以当时,最短因为当点为棱的中点时,是等腰三角形,所以,当点是的中点时,取得最小值()当点在对角线上运动,点在棱上运动时,的最小值仍然是证明:如下图,设,由正方体的对称性,显然有设在平面上的射影是在中,所以,即有所以,点的坐标是由已知,可设,则当时,取得最小值,最小值是
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号