资源预览内容
第1页 / 共14页
第2页 / 共14页
第3页 / 共14页
第4页 / 共14页
第5页 / 共14页
第6页 / 共14页
第7页 / 共14页
第8页 / 共14页
第9页 / 共14页
第10页 / 共14页
亲,该文档总共14页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
word三角函数型应用题高一1 如图:某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道,是直角顶点来处理污水,管道越长,污水净化效果越好.设计要求管道的接口是的中点,分别落在线段上.米,米,记.1试将污水净化管道的长度表示为的函数,并写出定义域;2假如,求此时管道的长度;3问:当取何值时,污水净化效果最好?并求出此时管道的长度.解:1,由于,.(2) 时,,;3=设如此由于,所以在内单调递减,于是当时时,的最大值米. 答:当或时所铺设的管道最短,为米.2某居民小区内建有一块矩形草坪ABCD,AB=50米,BC=米,为了便于居民平时休闲散步,该小区物业管理公司将在这块草坪内铺设三条小路OE、EF和OF,考虑到小区整体规划,要求O是AB的中点,点E在边BC上,点F在边AD上,且EOF=90,如下列图1设BOE=,试将的周长表示成的函数关系式,并求出此函数的定义域;2经核算,三条路每米铺设费用均为400元,试问如何设计才能使铺路的总费用最低?并求出最低DABCOEF总费用解:(1)在RtBOE中,OB=25, B=90,BOE=,OE=.2分在RtAOF中,OA=25, A=90,AFO=,OF=.4分又EOF=90,EF=,即6分当点F在点D时,这时角最小,求得此时=;当点E在C点时,这时角最大,求得此时=故此函数的定义域为.8分(2)由题意知,要求铺路总费用最低,只要求的周长的最小值即可.由1得,设,如此,12分由,得,从而,15分当,即BE=25时,,所以当BE=AE=25米时,铺路总费用最低,最低总费用为元.16分3. 如图,ABCD是块边长为100的正方形地皮,其中AST是一半径为90的扇形小山,其余局部都是平地,一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P在弧ST上,相邻两边CQ、CR落在正方形的边BC、CD上,求矩形停车场PQCR面积的最大值和最小值。QCPSDRABT解:设延长交于令-10故当时,S的最小值为,当 时 S 的4如图,在半径为、圆心角为的扇形的弧上任取一点,作扇形的内接矩形,使点在上,点在上,设矩形的面积为,按如下要求写出函数的关系式:1设,将表示成的函数关系式;设,将表示成的函数关系式;请你选用1中的一个函数关系式,求出的最大值POABQMN解:1因为 , , 所以,2分,所以.4分因为,所以6分所以,即,8分2选择,12分13分所以.14分5 如如下图,某小区准备绿化一块直径为的半圆形空地,的内接正方形为一水池,外的地方种草,其余地方种花. 假如,设的面积为,正方形的面积为,将比值称为“规划合理度.1试用,表示和;2假如为定值,当为何值时,“规划合理度最小?并求出这个最小值1在中,3分设正方形的边长为如此,由,得,故所以6分2, 8分令,因为,所以,如此10分所以,所以函数在上递减,12分因此当时有最小值,此时14分所以当时,“规划合理度最小,最小值为15分AB2m2mMNEDFPQCCl6 如下列图,一条直角走廊宽为2米。现有一转动灵活的平板车,其平板面为矩形ABEF,它的宽为1米。直线EF分别交直线AC、BC于M、N,过墙角D作DPAC于P,DQBC于Q;假如平板车卡在直角走廊内,且,试求平板面的长 (用表示);假如平板车要想顺利通过直角走廊,其长度不能超过多少米?解:1DM=,DN=,MF=,EN=,EF=DM+DN-MF-EN=+= 2“平板车要想顺利通过直角走廊即对任意角,平板车的长度不能通过,即平板车的长度;记,有=,=此后研究函数的最小值,方法很多;如换元记,如此或直接求导,以确定函数在上的单调性;当时取得最小值7本小题总分为15分 一铁棒欲通过如下列图的直角走廊,试回答如下问题:1求棒长L关于的函数关系式:;2求能通过直角走廊的铁棒的长度的最大值解:1如图,2令,因为,所以,ABC如此,当时,随着的增大而增大,所以所以所以能够通过这个直角走廊的铁棒的最大长度为4 15分8 如图,A,B,C是三个汽车站,AC,BE是直线型公路AB120 km,BAC75,ABC45有一辆车称甲车以每小时96km的速度往返于车站A,C之间,到达车站后停留10分钟;另有一辆车称乙车以每小时120km的速度从车站B开往另一个城市E,途经车站C,并在车站C也停留10分钟早上8点时甲车从车站A、乙车从车站B同时开出1计算A,C两站距离,与B,C两站距离;2假如甲、乙两车上各有一名旅客需要交换到对方汽车上,问能否在车站C处利用停留时间交换3求10点时甲、乙两车的距离参考数据:,1在ABC中,ACB60,2甲车从车站A开到车站C约用时间为小时60分钟,即9点到C站,至9点零10分开出乙车从车站B开到车站C约用时间为小时66分钟,即9点零6分到站,9点零16分开出如此两名旅客可在9点零6分到10分这段时间内交换到对方汽车上310点时甲车离开C站的距离为,乙车离开C站的距离为,两车的距离等于 9 如下列图,某动物园要为刚入园的小老虎建造一间两面靠墙的三角形露天活动室,已有两面墙的夹角为60即,现有可供建造第三面围墙的材料6米两面墙的长均大于6米,为了使得小老虎能健康成长,要求所建造的三角形露天活动室尽可能大,记,问当为多少时,所建造的三角形露天活动室的面积最大?解:在中,由正弦定理:3分化简得:所以8分即12分所以当即时,=14分答:当时,所建造的三角形露天活动室的面积最大。15分另解:下同10 某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶假设该小船沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇1假如希望相遇时小艇的航行距离最小,如此小艇航行速度的大小应为多少?2假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案即确定航行方向与航行速度的大小,使得小艇能以最短时间与轮船相遇,并说明理由30AOCD解:1设相遇时小艇航行的距离为s海里,如此s 故当t时,smin10,此时v30即小艇以30海里/小时的速度航行,相遇时小艇的航行距离最小2如图,由1得OC10,AC10,故OCAC,且对于线段AC上任意点P,有OPOCAC而小艇的最高航行速度只能达到30海里/小时,故轮船与小艇不可能在A、C包含C的任意位置相遇设COD0,如此在RtCOD中,CD10tan,OD,由于从出发到相遇,轮船与小艇所需要的时间分别为t和t,所以,解得v又v30,故sin(),从而由于时,tan取得最小值,于是当时,t取得最小值.此时,在AOB中,OAODAD20,故可设计航行方案如下:航行方向为北偏东,航行速度为30海里/小时,小艇能以最短时间与轮船相遇文案大全
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号