资源预览内容
第1页 / 共39页
第2页 / 共39页
第3页 / 共39页
第4页 / 共39页
第5页 / 共39页
第6页 / 共39页
第7页 / 共39页
第8页 / 共39页
第9页 / 共39页
第10页 / 共39页
亲,该文档总共39页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
直读光谱仪讲义第一章 直读光谱仪的概况国内外光电直读光谱仪的发展 光谱起源于17世纪,1666年物理学家牛顿第一次进行了光的色散实验。他在暗室中引入一束太阳光,让它通过棱镜,在棱镜后面的自屏上,看到了红、橙、黄、绿、兰、靛、紫七种颜色的光分散在不同位置上即形成一道彩虹。这种现象叫作光谱这个实验就是光谱的起源,自牛顿以后,一直没有引起人们的注意。到1802年英国化学家沃拉斯顿发现太阳光谱不是一道完美无缺的彩虹,而是被一些黑线所割裂。 1814年德国光学仪器专家夫琅和费研究太阳光谱中的黑斑的相对位置时把那些主要黑线绘出光谱图。 1826年泰尔博特研究钠盐、钾盐在酒精灯上光谱时指出,发射光谱是化学分析的基础、钾盐的红色光谱和钠盐的黄色光谱都是这个元素的特性。 到1859年克希霍夫和本生为了研究金属的光谱自己设计和制造了一种完善的分光装置,这个装置就是世界上第一台实用的光谱仪器,研究火焰、电火花中各种金属的谱线,从而建立了光谱分析的初步基础。 从1860年到1907年之间、用火焰和电火花放电发现碱金属元素铯Cs、1861年又发现铷Rb和铊Tl,1868年又发现铟In和氦He。1869年又发现氮N。18751907年又相继发现镓Ga,钾K,铥Tm,镨Pr,钋Pe,钐Sm,钇y,镥Lu等。 1882年,罗兰发明了凹面光栅,即是把划痕直接刻在凹球面上。凹面光栅实际上是光学仪器成象系统元件的合为一体的高效元件,它解决了当时棱镜光谱仪所遇到的不可克服的困难。凹面光栅的问世不仅简化了光谱仪器的结构,而且还提高了它的性能。 波耳的理论在光谱分析中起了作用,其对光谱的激发过程、光谱线强度等提出比较满意的解释。 从测定光谱线的绝对强度转到测量谱线的相对强度的应用,使光谱分析方法从定性分析发展到定量分析创造基础。从而使光谱分析方法逐渐走出实验室,在工业部门中应用了。 1928年以后,由于光谱分析成了工业的分析方法,光谱仪器得到迅速的发展,一方面改善激发光源的稳定性,另一方面提高光谱仪器本身性能。 最早的光源是火焰激发光谱;后来又发展应用简单的电弧和电火花为激发光源,在上世纪的三十、四十年代改进采用控制的电弧和电火花为激发光源,提高了光谱分析的稳定性。工业生产的发晨,光谱学的进步,促使光学仪器进一步得到改善,而后者又反作用于前者,促进了光谱学的发展和工业生产的发展。 六十年代光电直读光谱仪,随着计算机技术的发展开始迅速发展。由于计算机技术的发展,电子技术的发展,电子计算机的小型化及微处理机的出现和普及,成本降低等原因、于上世纪的七十年代光谱仪器几乎100地采用计算机控制,这不仅提高了分析精度和速度,而且对分析结果的数据处理和分析过程实现自动化控制。 解放后,我国的光谱仪器工业从无到有,由小到大,得到飞跃的发展,且具有一定的规模,与世界先进技术竞争中求生存,社会商品竞赛中得到发展。 1958年开始试制光谱仪器,生产了我国第一台中型石英摄谱仪,大型摄谱仪,单色仪等。中科院光机所开始研究刻制光栅,59年上海光学仪器厂,63年北京光学仪器厂开始研究刻制光栅,63年研制光刻成功。19661968年北京光学仪器厂和上海光学仪器厂先后研制成功中型平面光栅摄谱仪和一米平面光栅摄谱仪及光电直读头。19711972年由北京第二光学仪器厂研究成功国内第一台WZG200平面光栅光量计,结束了我国不能生产光电直读光谱仪的历史。 八十年代以来,我国铸造行业开始引进光电直读光谱仪作为熔炼过程中化学成份控制的分析手段,并逐步取代了我国传统的湿法化学分析法,至今已发展到中小企业也逐步采用光谱法配合作炉前分析。国外引进的铸造生产线已配备了专用的光谱分析设备,作为成套设备进入中国,这是铸造行业对质量控制要求越来越严的发展的必然结果,也是光电光谱分析本身的优点决定了这一技术自1945年问世以来,历时五十六年而经久不衰之缘故。众所周知,原子发射光谱分析所采用的原理是用电弧(或火花)的高温使样品中各元素从固态直接气化并被激发而发射出各元素的特征波长,用光栅分光后,成为按波长排列的“光谱”,这些元素的特征光谱线通过出射狭缝,射入各自的光电倍增管,光信号变成电信号,经仪器的控制测量系统将电信号积分并进行模/数转换,然后由计算机处理,并打印出各元素的百分含量。从以上原理可以看出原子发射光谱分析,有其独特的、特别适合于配合炉前分析的优点,使其发展成为金属冶炼和铸造行业必不可少的分析手段,其特点如下:一、 炉中取的样品只要打磨掉表面氧化皮,固体样品即可放在样品台上激发,免去了化学分析钻取试样的麻烦。对于铝及铜、锌等有色金属样品而言,可用小车床车去表面氧化皮即可。二、 从样品激发到计算机报出元素分析含量只需20-30秒钟,速度非常快,有利于缩短冶炼时间,降低成本。特别是对那些容易烧损的元素,更便于控制其最后的成份。三、 样品中所有要分析的元素(几个甚至十几个)可以一次同时分析出来,对于牌号复杂的产品,要求分析元素愈多愈合算,经济效益好。四、 分析精度非常高,可以有效控制产品的化学成份,保证它能符合国家标准的规格,甚至可将合金成份控制到规格的中下限,以节省中间合金或铁合金的消耗。五、 分析数据可以从计算机打印出来或存入软盘中,作为永久性记录。总之,从技术角度来看光电光谱分析,可以说至今还没有比它能更有效的用于炉前快速分析的仪器,具备了那么多的特点而能取代它。所以世界上冶炼、铸造以及其他金属加工企业均竞相采用这类仪器成为一种常规分析手段,从保证产品质量,从经济效益等方面,它是十分有利的分析工具。九十年代以来,我国有一些知名企业,如:长春一汽、上海大众、无锡小天鹅等在引进国外铸造生产线时均带有德国OBLF光谱仪作为炉前分析的专用设备。 德国OBLF公司生产光谱仪在德国已有三十年历史,用户遍布世界各地。仪器型号有: 适用于单基体分析系统的有OBLF GS-1000型(可分析氮元素),最多能设置32个分析通道。适用于多种基体的分析系统有OBLF QSN-750型(最多可设置60个分析通道)和QSG-750型(最多能设置60个分析通道),可分析氮,以及酸溶性及酸不溶性铝和硼等。仪器特点:考虑到铸造行业现场环境,作如下设计:一、 光学室具有防震装置,并有恒温装置。光室温度为350.2,全部器件都密封在真空室内,以保证其长期稳定性。即使在较差的作业环境中,仪器也能正常工作。所有通道长期稳定性的结果表明了八小时之内有300个测量值(每十个取一平均值),则30个平均值中最高最低之值不超过原强度比值的2%。二、 1000型采用焦距为500mm的凹面光栅,750型采用焦距为750mm的凹面光栅根据分析样品选样光栅刻线,保证有足够的分辨率以满足复杂合金钢的分析。三、 由于光谱仪处于日夜不停的工作状态,采用微机控制真空泵,既保证了足够的真空度亦保护了真空泵,处于冷状态延长寿命,减少油蒸气。四、 提高分析灵敏度及精确度方面,在光路上采用直射式提高光强,并采用脉冲放电激发光源,放电频率可达1000赫兹及单火花技术,可大大提高信噪比及激发的稳定性,从而有非常良好的分析精度。五、 性能良好的光谱仪软件,使仪器全部自动化并可进行背景校正、干扰元素校正、基体校正等,旨在保证分析的正确度。OBLF光谱仪由于具备了以上各种特点,使得仪器完全能满足铸造行业炉前快速分析的要求,故现在在广大铸造、冶金、机械等行业广泛使用。第二章 光谱分析基本原理2-1,光谱分析的种类和分析的内容 在日常生活中,可以见到各种不同的,如红、黄、兰、白色光。太阳光经三棱镜后,会产生红、橙、黄、绿、青、兰,紫排列的色带,还有人们肉眼所看不见的光如紫外线,红外线,射线等。 从光谱分析的观点重要的谱线波长是在10012000*10-1nm之间,这个区间又分为几个光谱范围。 从广义讲,各种电磁辐射都属于光谱,一般按其波长可分为:射线 0.000050.14nmx射线 0.0110nm微波波谱 0.3mmlmm而光谱区可分为:真空紫外区10200nm近紫外区200380nm可见光谱区 380780nm近红外光谱 780nm一3m远红外光谱 3300m 注:1米 (m)=103毫米 (mm)=106微米 (m) 光电直读光谱分析应用的元素波长,大部分在真空紫外区和近紫外区最多。 我们通常所讲到光谱仅指光学光谱而言,从物质(固、液、气)加热或用光或用电激发射光谱时得到三种类型的光谱。线光谱是由气体状态下的原子或离子经激发而得到的,通常呈现分立的线状所以称线光线,就其产生方式而言又可分为发射光谱(明线)和吸收光谱(暗线)两种,因此光谱分析又分为发射光谱分析和原子吸收光谱分析。如果是原子激发产生的光谱,称原子光谱,如果离子激发所产生的光谱称离子光谱。带状光谱是原子结合成分子中发出的或两个以上原子的集团发出的,通常呈带状分布,是分子光谱产生,如在光谱分析中采用炭电极,在高温时,炭与空气中氮化合生成氰带(CN)分子,当氰分子在电弧中激发时产生的光谱,称氰带。连续光谱是从白热的固体中发出的,是特定的状态下原子分子中发出来的,所以连续光谱是无限数的线光谱或带光谱集合体。 我们通常讲的光谱分析,一般是指“原子发射光谱分析”,光电光谱分析中元素波长都是元素的原子光谱和离子光谱。 现在光电光谱仪主要分为两大类。非真空型的光电光谱仪的工作波长范围在近紫外区和可见光区。真空光电光谱仪工作波长扩展到远真空紫外1200nm,因而利用这个波段中氮、碳、磷、硫等谱线的灵敏度来分析钢中的重要元素。22 发射光谱分析的理论基础221 原子结构与原子中电子的性质 光谱分析主要是指定性分析和定量分析;分析时,必须要了解原子的结构和原子中电子的性质。实验表明、任何元素的原子都包含着一个小的结构紧密的原子核,原子核由质子和中子组成,核外分布着电子,每个电子都带有负电荷,其电荷大小与质子所带的电荷相等而符号相反。中子是不带电的,在中性的原子内,质子的数目与电子数目相等,这个数目表征着每一元素的特征,通常称为原子序数。 正是由于电子在原子核周围分布不是随意的,而是有一定规律的,所以才显示了每个元素的不同化学性质和不同光谱,因而我们可以想象电子处于一定轨道上,同时电子在每一轨道(或状态上)所具有的能量不相同的,每个轨道可认为是相当于原子中的一个能级。波耳的原子模型图来解释原子核外的电子结构是比较简单明了的。 图中A、B分别表示氢原子和氦原子的波耳模型 事实上,电子具有波动性,这个性质使原子中电子轨道概念失去意义,代替这个概念的和更能反映原子图象的是量子力学的电子状态或者称波函数,在原子核周围的空间电子是按几率分布的,这种几率分布称为“电子云”依据量子力学理论计算得到的电子云密度与波耳氢原子第一轨道地方是相吻合的。 电子在原于中几率分布 222 光谱波长的产生 任何物质都是由元素组成的,而元素又都是由原子组成的,原子是由原子核和电子组成,每个电子都处在一定的能级上,具有一定的能量,在正常状态下,原子处在稳定状态,它的能量最低,这种状态称基态。当物质受到外界能量(电能和热能)的作用时,核外电子就跃迁到高能级,处于高能态(激发态)电子是不稳定的,激发态原子可存在的时间约10-8秒,它从高能态跃迁到基态,或较低能态时,把多余的能量以光的形式释放出来,原子能
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号