资源预览内容
第1页 / 共3页
第2页 / 共3页
第3页 / 共3页
亲,该文档总共3页全部预览完了,如果喜欢就下载吧!
资源描述
教育城中考网:http:/www.12edu.cn/zhaokao/zk 第3页6.3二次函数与一元二次方程(1)一、学习目标:1、经历探索二次函数与一元二次方程关系的过程,体会方程与函数之间的关系。2、理解二次函数的图象与x轴公共点的个数与相应的一元二次方程根的对应关系。3、进一步体验数形结合的数学方法。二、思路导学:本节课从“函数值何时为0 ”着手,沟通二次函数与相应的一元二次方程的关系;通过函数图象揭示相应的一元二次方程的解的几何意义。三、知识导学:(一)思考与探索:二次函数y=x2-2x-3与一元二次方程x2-2x-3=0有怎样的关系?1、从关系式看二次函数y=x2-2x-3成为一元二次方程x2-2x-3=0的条件是什么?2、反应在图象上:观察二次函数y=x2-2x-3的图象,你能确定一元二次方程 x2-2x-3=0的根吗?3、结论:一般地,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点(x1,0)、(x2,0),那么一元二次方程ax2+bx+c=0有两个不相等的实数根x=x1、x=x2。反过来也成立。4、观察与思考: 观察下列图象:(1)观察函数y= x2-6x+9与y= x2-2x+3的图象与x轴的公共点的个数;(2)判断一元二次方程x2-6x+9=0和x2-2x+3=0的根的情况;(3)你能利用图象解释一元二次方程的根的不同情况吗?(二)归纳提高:一般地,二次函数y=ax2+bx+c图象与一元二次方程ax2+bx+c=0的根有如下关系:1、如果二次函数y=ax2+bx+c图象与x轴有两个交点(m,0)、(n,0),那么一元二次方程ax2+bx+c=0有 实数根x1= ,x2= .2、如果二次函数y=ax2+bx+c图象与x轴有一个交点(m,0),那么一元二次方程ax2+bx+c=0有 实数根x1=x2= .3、如果二次函数y=ax2+bx+c图象与x轴没有交点,那么一元二次方程ax2+bx+c=0 实数根.反过来,由一元二次方程ax2+bx+c=0的根的情况可以判断二次函数y=ax2+bx+c图象与x轴的交点个数。当=0时,一元二次方程ax2+bx+c=0的根的情况是 ,此时二次函数y=ax2+bx+c图象与x轴有 交点;当=0时,一元二次方程ax2+bx+c=0的根的情况是 ,此时二次函数y=ax2+bx+c图象与x轴有 交点;当=0时,一元二次方程ax2+bx+c=0的根的情况是 ,此时二次函数y=ax2+bx+c图象与x轴有 交点.(三)巩固拓展:1、不画图象,你能说出函数y=-x2+x+6与x轴的交点坐标吗?2、判断下列函数的图象与x轴是否有公共点,说明理由.(1)y=x2-x (2)y=-x2+6x-9 (3)y=3x2+6x+113、已知二次函数y=x2-4x+k+2与x轴有公共点,求k的取值范围.(四)随堂练习:1、方程 的根是 ;则函数 的图象与x轴的交点有 个,其坐标是 2、方程 的根是 ;则函数 的图象与x轴的交点有 个,其坐标是 3、下列函数的图象中,与x轴没有公共点的是( ) (五)应用:1、打高尔夫球时 ,球的飞行路线可以看成是一条抛物线,如果不考虑空气的阻力,某次球的飞行高度y(单位:米)与飞行距离x(单位:百米)满足二次函数 :y= -5x2+20x,这个球飞行的水平距离最远是多少米?球的飞行高度能否达到40m?y(米)O4123Ao10X(百米)2、当一枚火箭竖直向上发射时。它的高度h(m)与时间t(s)的关系可以用h=-5t2+150t+10表示,经过多长时间,火箭到达发射的最高点?最高点的高度是多少?(六)写一写数学日记:学习课题: . 知识归纳与整理: . . 有哪些数学思想或方法: . 自我评价: . 我的收获与困惑: . . 老师我想对你说: . . 本资料由教育城编辑整理 更多资料:http:/s.12edu.cn/SearchDatum.aspx
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号