资源预览内容
第1页 / 共5页
第2页 / 共5页
第3页 / 共5页
第4页 / 共5页
第5页 / 共5页
亲,该文档总共5页全部预览完了,如果喜欢就下载吧!
资源描述
2013年东安一中高三艺体生数学辅导资料-陈雄武第二讲简易逻辑,命题及充分必要条件【知识梳理】1常用逻辑用语命题:可以判断真假的语句叫命题;逻辑联结词:“或”“且”“非”这些词就叫做逻辑联结词;简单命题:不含逻辑联结词的命题。复合命题:由简单命题与逻辑联结词构成的命题。常用小写的拉丁字母p,q,r,s,表示命题,故复合命题有三种形式:p或q;p且q;非p。(2)复合命题的真值“非p”形式复合命题的真假可以用下表表示: 真假相对 p非p真假假真“p且q”形式复合命题的真假可以用下表表示:一假则假pqp且q真真真真假假假真假假假假“p或q”形式复合命题的真假可以用下表表示:一真则真pqP或q真真真真假真假真真假假假(3)四种命题如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互为逆命题;如果一个命题的条件和结论分别是原命题的条件和结论的否定,那么这两个命题叫做互否命题,这个命题叫做原命题的否命题;如果一个命题的条件和结论分别是原命题的结论和条件的否定,那么这两个命题叫做互为逆否命题,这个命题叫做原命题的逆否命题。两个互为逆否命题的真假是相同的,即两个互为逆否命题是等价命题.若判断一个命题的真假较困难时,可转化为判断其逆否命题的真假。(1)四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若,则逆否命题若,则(2)四种命题间的相互关系(4)条件一般地,如果已知pq,那么就说:p是q的充分条件;q是p的必要条件。可分为四类:(1)充分不必要条件,即pq,而qp;(2)必要不充分条件,即pq,而qp;(3)既充分又必要条件,即pq,又有qp;(4)既不充分也不必要条件,即pq,又有qp。一般地,如果既有pq,又有qp,就记作:pq.“”叫做等价符号。pq表示pq且qp。这时p既是q的充分条件,又是q的必要条件,则p是q的充分必要条件,简称充要条件。(5)全称命题与特称命题这里,短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。含有全体量词的命题,叫做全称命题。短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号表示,含有存在量词的命题,叫做存在性命题。【典型例题】1写出由下述各命题构成的“p或q”,“p且q”,“非p”形式的复合命题,并指出所构成的这些复合命题的真假。(1)p:9是144的约数,q:9是225的约数。(2)p:方程x21=0的解是x=1,q:方程x21=0的解是x=1;(3)p:实数的平方是正数,q:实数的平方是0.2、(山东) 命题“对任意的,”的否定是(A)不存在, (B)存在,(C)存在, (D)对任意的,3、(福建文4)“|x|2”是“x2-x-6 1”的否定是(A)对任意实数, 都有1 (B)不存在实数,使1(C)对任意实数, 都有1 (D)存在实数,使12.【2012高考重庆文1】命题“若p则q”的逆命题是(A)若q则p (B)若p则 q(C)若则 (D)若p则3.【2012高考辽宁文5】已知命题p:x1,x2R,(f(x2)f(x1)(x2x1)0,则p是(A) x1,x2R,(f(x2)f(x1)(x2x1)0 (B) x1,x2R,(f(x2)f(x1)(x2x1)0(C) x1,x2R,(f(x2)f(x1)(x2x1)0(D) x1,x2R,(f(x2)f(x1)(x2x1)”是“2x2+x-10”的(A) 充分而不必要条件(B) 必要而不充分条件(C) 充分必要条件(D) 既不充分也不必要条件1
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号