资源预览内容
第1页 / 共24页
第2页 / 共24页
第3页 / 共24页
第4页 / 共24页
第5页 / 共24页
第6页 / 共24页
第7页 / 共24页
第8页 / 共24页
第9页 / 共24页
第10页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
普通物理的数学基础选自赵凯华老师新概念力学一、微积分初步? 物理学研究的是物质的运动规律,因此我们经常遇到的物理量大多数是变量,而我们要研究的正是一些变量彼此间的联系。这样,微积分这个数学工具就成为必要的了。我们考虑到,读者在学习基础物理课时若能较早地掌握一些微积分的初步知识,对于物理学的一些基本概念和规律的深入理解是很有好处的。所以我们在这里先简单地介绍一下微积分中最基本的概念和简单的计算方法,在讲述方法上不求严格和完整,而是较多地借助于直观并密切地结合物理课的需要。至于更系统和更深入地掌握微积分的知识和方法,读者将通过高等数学课程的学习去完成。1函数及其图形? 11函数? 自变量和因变量? 绝对常量和任意常量?12函数的图象? 13物理学中函数的实例?2导数? 21极限? 如果当自变量x无限趋近某一数值x0(记作xx0)时,函数f(x)的数值无限趋近某一确定的数值a,则a叫做xx0时函数f(x)的极限值,并记作(A17)式中的“lim”是英语“limit(极限)”一词的缩写,(A17)式读作“当x趋近x0时,f(x)的极限值等于a”。极限是微积分中的一个最基本的概念,它涉及的问题面很广。这里我们不企图给“极限”这个概念下一个普遍而严格的定义,只通过一个特例来说明它的意义。考虑下面这个函数:这里除x1外,计算任何其它地方的函数值都是没有困难的。例如当但是若问x1时函数值f(1)?我们就会发现,这时(A18)式的说是没有意义的。所以表达式(A18)没有直接给出f(1),但给出了x无论如何接近1时的函数值来。下表列出了当x的值从小于1和大于1两方面趋于1时f(x)值的变化情况:表A-1 x与f(x)的变化值x3x2-x-2x-10.9-0.47-0.14.70.99-0.0497-0.014.970.999-0.004997-0.0014.9970.9999-0.0004997-0.00014.99971.10.530.15.31.010.5030.015.031.0010.0050030.0015.0031.00010.000500030.00015.0003?从上表可以看出,x值无论从哪边趋近1时,分子分母的比值都趋于一个确定的数值5,这便是x1时f(x)的极限值。其实计算f(x)值的极限无需这样麻烦,我们只要将(A18)式的分子作因式分解:3x2-x-2(3x2)(x-1),并在x1的情况下从分子和分母中将因式(x1)消去:即可看出,x趋于1时函数f(x)的数值趋于3125。所以根据函数极限的定义,求极限公式(2)(3)(4) 等价无穷小量代换sinxx;tanx;arctanxx;arcsinxx; ? 22极限的物理意义? (1)瞬时速度对于匀变速直线运动来说,这就是我们熟悉的匀变速直线运动的速率公式(A5)。(2)瞬时加速度时的极限,这就是物体在tt0时刻的瞬时加速度a:(3)水渠的坡度任何排灌水渠的两端都有一定的高度差,这样才能使水流动。为简单起见,我们假设水渠是直的,这时可以把x坐标轴取为逆水渠走向的方向(见图A-5),于是各处渠底的高度h便是x的函数:h=h(x)知道了这个函数,我们就可以计算任意两点之间的高度差。?就愈能精确地反映出x=x0这一点的坡度。所以在x=x0这一点的坡度k应是? 23函数的变化率导数? 前面我们举了三个例子,在前两个例子中自变量都是t,第三个例子中自变量是x这三个例子都表明,在我们研究变量与变量之间的函数关系时,除了它们数值上“静态的”对应关系外,我们往往还需要有“运动”或“变化”的观点,着眼于研究函数变化的趋势、增减的快慢,亦即,函数的“变化率”概念。当变量由一个数值变到另一个数值时,后者减去前者,叫做这个变量的增量。增量,通常用代表变量的字母前面加个“”来表示。例如,当自变量x的数值由x0变到x1时,其增量就是xx1-x0?(A25)与此对应。因变量y的数值将由y0f(x0)变到y1=f(x1),于是它的增量为yy1-y0=f(x1)f(x0)f(x0+x)f(x0)(A26)应当指出,增量是可正可负的,负增量代表变量减少。增量比可以叫做函数在xx0到xx0+x这一区间内的平均变化率,它在x0时的极限值叫做函数yf(x)对x的导数或微商,记作y或f(x),f(x)等其它形式。导数与增量不同,它代表函数在一点的性质,即在该点的变化率。应当指出,函数f(x)的导数f(x)本身也是x的一个函数,因此我们可以再取它对x的导数,这叫做函数yf(x)据此类推,我们不难定义出高阶的导数来。有了导数的概念,前面的几个实例中的物理量就可表示为:? 24导数的几何意义? 在几何中切线的概念也是建立在极限的基础上的。如图A-6所示,为了确定曲线在P0点的切线,我们先在曲线上P0附近选另一点P1,并设想P1点沿着曲线向P0点靠拢。P0P1的联线是曲线的一条割线,它的方向可用这直线与横坐标轴的夹角来描述。从图上不难看出,P1点愈靠近P0点,角就愈接近一个确定的值0,当P1点完全和P0点重合的时候,割线P0P1变成切线P0T,的极限值0就是切线与横轴的夹角。?在解析几何中,我们把一条直线与横坐标轴夹角的正切tan叫做这条直线的斜率。斜率为正时表示是锐角,从左到右直线是上坡的(见图A-7a);斜率为负时表示是钝角,从左到右直线是下坡的(见图A-7b)。现在我们来研究图A-6中割线P0P1和切线P0T的斜率。设P0和P1的坐标分别为(x0,y0)和(x0+x,y0+y),以割线P0P1为斜边作一直角三角形P0P1M,它的水平边P0M的长度为x,竖直边MP1的长度为y,因此这条割线的斜率为如果图A-6中的曲线代表函数y=f(x),则割线P0P1的斜率就等于函数在 线P0P1斜率的极限值,即所以导数的几何意义是切线的斜率。3导数的运算? 在上节里我们只给出了导数的定义,本节将给出以下一些公式和定理,利用它们可以把常见函数的导数求出来。? 31基本函数的导数公式? (1)yf(x)C(常量)(2)y=f(x)x(3)yf(x)=x2(4)yf(x)x3?上面推导的结果可以归纳成一个普遍公式:当y=xn时,等等。利用(A33)式我们还可以计算其它幂函数的导数(见表A-2)。除了幂函数xn外,物理学中常见的基本函数还有三角函数、对数函数和指数函数。我们只给出这些函数的导数公式(见表A-2)而不推导,读者可以直接引用。? 32有关导数运算的几个定理? 定理一证:定理二表A-2基本导数公式函数y=f(x)导数y=f(x)c(任意常量)0xn(n为任意常量)nxn-1n=1,x1n=2,x22xn=3,x33x2sinxcosxcosx-sinxlnxexex定理三定理四例题1求y=x2a2(a为常量)的导数。例题3求y=ax2(a为常量)的导数。例题4求y=x2ex的导数。例题6求ytanx的导数。?例题7求ycos(axb)(a、b为常量)的导数。解:令vaxb,yu(v)cosv,则例题9求y=x2eax2(a为常量)的导数。解:令uev,vax2,则4微分和函数的幂级数展开? 41微分? 自变量的微分,就是它的任意一个无限小的增量x用dx代表x的微分,则dx=x(A38)一个函数y=f(x)的导数f(x)乘以自变量的微分dx,叫做这个函数的微分,用dy或df(x)表示,即dydf(x)f(x)dx,? (A39)一个整体引入的。当时它虽然表面上具有分数的形式,但在运算时并不象普通分数那样可以拆成“分子”和“分母”两部分。在引入微分的概念之后,我们就可把导数看成微分dy与dx之商(所谓“微商”),即一个真正的分数了。把导数写成分数形式,常常是很方便的,例如,把上节定理四(A37)此公式从形式上看就和分数运算法则一致了,很便于记忆。下面看微分的几何意义。图A-8是任一函数yf(x)的图形,P0(x0,y0)和P1(x0+x,y0+y)是曲线上两个邻近的点,P0T是通过P0的切线。直角三角形P0MP1的水平边的交点为N,则?但tanNP0M为切线P0T的斜率,它等于x=x0处的导数f(x0),因此所以微分dy在几何图形上相当于线段MN的长度,它和增量是正比于(x)2以及x更高幂次的各项之和例如对于函数y=f(x)x3,y3x2x3x(x)2(x)3,而dy=f(x)x=3x2x当x很小时,(x)2、(x)3、比x小得多,中的线性主部。这就是说,如果函数在x=x0的地方象线性函数那样增长,则它的增量就是dy? ?5.积分? 5.1几个物理中的实例? (1)变速直线运动的路程我们都熟悉匀速直线运动的路程公式。如果物体的速率是v,则它在ta到tb一段时间间隔内走过的路程是sv(tbta).? (A.45)对于变速直线运动来说,物体的速率v是时间的函数:vv(t),函数的图形是一条曲线(见图A-10a),只有在匀速直线运动的特殊情况下,它才是一条直线(参见图A-4b)。对于变速直线运动,(A.45)式已不适用。但是,我们可以把tta到ttb这段时间间隔分割成许多小段,当小段足够短时,在每小段时间内的速率都可以近似地看成是不变的。这样一来,物体在每小段时间里走过的路程都可以按照匀速直线运动的公式来计算,然后把各小段时间里走过的路程都加起来,就得到ta到tb这段时间里走过的总路程。?设时间间隔(tbta)被tt1(=ta)、t2、t3、tn、tb分割成n小段,每小段时间间隔都是t,则在t1、t2、t3、tn各时刻速率分别是v(t1)、v(t2)、v(t3)、v(tn)。如果我们把各小段时间的速率v看成是不变的,则按照匀速直线运动的公式,物体在这些小段时间走过的路程分等于v(t1)t、v(t2)t、v(t3)t、v(tn)t.于是,在整个(tb-ta)这段时间里的总路程是现在我们来看看上式的几何意义。在函数vv(t)的图形中,通过t=t1、t2、t3、tn各点垂线的高度分别是v(t1)、v(t2)、v(t3)、v(tn)(见图A-10b),所以v(t1 )t、v(t2)t、v(t3)t、v(tn)t就分这些矩形面积的总和,即图中画了斜线的阶梯状图形的面积。在上面的计算中,我们把各小段时间t里的速率v看做是不变的,实际上在每小段时
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号