资源预览内容
第1页 / 共37页
第2页 / 共37页
第3页 / 共37页
第4页 / 共37页
第5页 / 共37页
第6页 / 共37页
第7页 / 共37页
第8页 / 共37页
第9页 / 共37页
第10页 / 共37页
亲,该文档总共37页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2012年全国硕士研究生入学统一考试数学二试题一、选择题:1-8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)曲线的渐近线条数 ( )(A) 0 (B) 1 (C) 2 (D) 3(2) 设函数,其中为正整数,则 ( )(A) (B) (C) (D) (3) 设,则数列有界是数列收敛的 ( )(A) 充分必要条件 (B) 充分非必要条件 (C) 必要非充分条件 (D) 非充分也非必要(4) 设则有 ( )(A) (B) (C) (D) (5) 设函数为可微函数,且对任意的都有则使不等式成立的一个充分条件是 ( )(A) (B) (C) (D) (6) 设区域由曲线围成,则 ( )(A) (B) 2 (C) -2 (D) - (7) 设, , , ,其中为任意常数,则下列向量组线性相关的为 ( )(A) (B) (C) (D) (8) 设为3阶矩阵,为3阶可逆矩阵,且.若,则 ( )(A) (B) (C) (D)二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9) 设是由方程所确定的隐函数,则 .(10) .(11) 设其中函数可微,则 .(12) 微分方程满足条件的解为 .(13) 曲线上曲率为的点的坐标是 .(14) 设为3阶矩阵,为伴随矩阵,若交换的第1行与第2行得矩阵,则 . 三、解答题:15-23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分 10 分)已知函数,记,(I)求的值;(II)若时,与是同阶无穷小,求常数的值.(16)(本题满分 10 分)求函数的极值.(17)(本题满分12分)过点作曲线的切线,切点为,又与轴交于点,区域由与直线围成,求区域的面积及绕轴旋转一周所得旋转体的体积.(18)(本题满分 10 分)计算二重积分,其中区域为曲线与极轴围成.(19)(本题满分10分)已知函数满足方程及,(I) 求的表达式;(II) 求曲线的拐点.(20)(本题满分10分) 证明,.(21)(本题满分10 分)(I)证明方程,在区间内有且仅有一个实根;(II)记(I)中的实根为,证明存在,并求此极限.(22)(本题满分11 分)设,(I) 计算行列式;(II) 当实数为何值时,方程组有无穷多解,并求其通解.(23)(本题满分11 分)已知,二次型的秩为2,(I) 求实数的值;(II) 求正交变换将化为标准形.2010年考研数学二真题一 填空题(84=32分)2009年全国硕士研究生入学统一考试数学二试题一、选择题:18小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数的可去间断点的个数,则( )1.2. 3.无穷多个.(2)当时,与是等价无穷小,则( ). .(3)设函数的全微分为,则点( )不是的连续点.不是的极值点. 是的极大值点. 是的极小值点.(4)设函数连续,则( ). . .(5)若不变号,且曲线在点上的曲率圆为,则在区间内( )有极值点,无零点.无极值点,有零点. 有极值点,有零点.无极值点,无零点.(6)设函数在区间上的图形为:1-2023-1O则函数的图形为( ).0231-2-11. 0231-2-11.0231-11.0231-2-11(7)设、均为2阶矩阵,分别为、的伴随矩阵。若,则分块矩阵的伴随矩阵为( ). .(8)设均为3阶矩阵,为的转置矩阵,且,若,则为( ). .二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)曲线在处的切线方程为 (10)已知,则 (11) (12)设是由方程确定的隐函数,则 (13)函数在区间上的最小值为 (14)设为3维列向量,为的转置,若矩阵相似于,则 三、解答题:1523小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限(16)(本题满分10 分)计算不定积分 (17)(本题满分10分)设,其中具有2阶连续偏导数,求与(18)(本题满分10分)设非负函数满足微分方程,当曲线过原点时,其与直线及围成平面区域的面积为2,求绕轴旋转所得旋转体体积。(19)(本题满分10分)求二重积分,其中(20)(本题满分12分)设是区间内过的光滑曲线,当时,曲线上任一点处的法线都过原点,当时,函数满足。求的表达式(21)(本题满分11分)()证明拉格朗日中值定理:若函数在上连续,在可导,则存在,使得()证明:若函数在处连续,在内可导,且,则存在,且。(22)(本题满分11分)设,()求满足的所有向量()对()中的任一向量,证明:线性无关。(23)(本题满分11分)设二次型()求二次型的矩阵的所有特征值;()若二次型的规范形为,求的值。2008年全国硕士研究生入学统一考试数学二试题一、选择题:18小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设,则的零点个数为( )0 1. 2 3(2)曲线方程为函数在区间上有连续导数,则定积分( )曲边梯形ABOD面积.梯形ABOD面积.曲边三角形面积.三角形面积.(3)在下列微分方程中,以(为任意常数)为通解的是( ) (5)设函数在内单调有界,为数列,下列命题正确的是( )若收敛,则收敛. 若单调,则收敛.若收敛,则收敛.若单调,则收敛.(6)设函数连续,若,其中区域为图中阴影部分,则 (7)设为阶非零矩阵,为阶单位矩阵. 若,则( )不可逆,不可逆. 不可逆,可逆.可逆,可逆. 可逆,不可逆. (8)设,则在实数域上与合同的矩阵为( ). . 二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9) 已知函数连续,且,则.(10)微分方程的通解是.(11)曲线在点处的切线方程为.(12)曲线的拐点坐标为_.(13)设,则.(14)设3阶矩阵的特征值为.若行列式,则.三、解答题:1523题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限.(16)(本题满分10分)设函数由参数方程确定,其中是初值问题的解.求.(17)(本题满分9分)求积分 .(18)(本题满分11分)求二重积分其中(19)(本题满分11分)设是区间上具有连续导数的单调增加函数,且.对任意的,直线,曲线以及轴所围成的曲边梯形绕轴旋转一周生成一旋转体.若该旋转体的侧面积在数值上等于其体积的2倍,求函数的表达式.(20)(本题满分11分)(1) 证明积分中值定理:若函数在闭区间上连续,则至少存在一点,使得 (2)若函数具有二阶导数,且满足,证明至少存在一点(21)(本题满分11分)求函数在约束条件和下的最大值与最小值.(22)(本题满分12分) 设矩阵,现矩阵满足方程,其中,(1)求证;(2)为何值,方程组有唯一解,并求;(3)为何值,方程组有无穷多解,并求通解.(23)(本题满分10分)设为3阶矩阵,为的分别属于特征值特征向量,向量满足,(1)证明线性无关;(2)令,求.2007年全国硕士研究生入学统一考试数学二试题一、选择题:110小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)当时,与等价的无穷小量是 (A) (B) (C) (D) (2)函数在上的第一类间断点是 (A)0 (B)1 (C) (D)(3)如图,连续函数在区间上的图形分别是直径为1的上、下半圆周,在区间的图形分别是直径为2的下、上半圆周,设,则下列结论正确的是: (A) (B) (C) (D) (4)设函数在处连续,下列命题错误的是: (A)若存在,则 (B)若存在,则 . (C)若存在,则 (D)若存在,则.
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号