资源预览内容
第1页 / 共27页
第2页 / 共27页
第3页 / 共27页
第4页 / 共27页
第5页 / 共27页
第6页 / 共27页
第7页 / 共27页
第8页 / 共27页
第9页 / 共27页
第10页 / 共27页
亲,该文档总共27页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
换向阀工作与原理换向阀 利用阀芯对阀体的相对运动,使油路接通、关断或变换油流的方向,从而实现液压执行元件及其驱动机构的启动、停止或变换运动方向。按阀芯相对于阀体的运动方式:滑阀和转阀按操作方式:手动、机动、电磁动、液动和电液动等按阀芯工作时在阀体中所处的位置:二位和三位等按换向阀所控制的通路数不同:二通、三通、四通和五通等。1、工作原理 图4-3a所示为滑阀式换向阀的工作原理图,当阀芯向右移动一定的距离时,由液压泵输出的压力油从阀的P口经A口输向液压缸左腔,液压缸右腔的油经B口流回油箱,液压缸活塞向右运动;反之,若阀芯向左移动某一距离时,液流反向,活塞向左运动。 图4-3b为其图形符号。 2、 换向阀的结构1) 手动换向阀 利用手动杠杆来改变阀芯位置实现换向。分弹簧自动复位(a)和弹簧钢珠(b)定位两种。2) 机动换向阀 机动换向阀又称行程阀,主要用来控制机械运动部件的行程,借助于安装在工作台上的档铁或凸轮迫使阀芯运动,从而控制液流方向。3) 电磁换向阀 利用电磁铁的通电吸合与断电释放而直接推动阀芯来控制液流方向。它是电气系统和液压系统之间的信号转换元件。 图4-9a所示为二位三通交流电磁阀结构。在图示位置,油口 P和A相通,油口B断开;当电磁铁通电吸合时,推杆1将阀芯2推向右瑞,这时油口P和A断开,而与B相通。当电磁铁断电释放时,弹簧3推动阀芯复位。图 49b为其图形符号。 4) 液动换向阀 利用控制油路的压力油来改变阀芯位置的换向阀。阀芯是由其两端密封腔中油液的压差来移动的。如图所示,当压力油从K2进入滑阀右腔时,K1接通回油,阀芯向左移动,使P和B相通,A和T相通;当K1接通压力油,K2接通回油,阀芯向右移动,使P和A相通,B和T相通;当K1和K2都通回油时,阀芯回到中间位置。5)电液换向阀 由电磁滑阀和液动滑阀组成。电磁阀起先导作用,可以改变控制液流方向,从而改变液动滑阀阀芯的位置。用于大中型液压设备中。3、 换向阀的性能和特点1)滑阀的中位机能 各种操纵方式的三位四通和三位五通式换向滑阀,阀芯在中间位置时,各油口的连通情况称为换向阀的中位机能。其常用的有“”型、“”型、“”型、”型、“”型等。 分析和选择三位换向阀的中位机能时,通常考虑:(1) 系统保压 P口堵塞时,系统保压,液压泵用于多缸系统。(2) 系统卸荷 P口通畅地与T口相通,系统卸荷。(H K X M型)(3) 换向平稳与精度 A、B两口堵塞,换向过程中易产生冲击,换向不平稳,但精度高;A、B口都通T口,换向平稳,但精度低。(4) 启动平稳性 阀在中位时,液压缸某腔通油箱,启动时无足够的油液起缓冲,启动不平稳。(5) 液压缸浮动和在任意位置上停止2)滑阀的液动力 由液流的动量定律可知,油液通过换向阀时作用在阀芯上的液动力有稳态液动力和瞬态液动力两种。(1)稳态液动力:阀芯移动完毕,开口固定后,液流流过阀口时因动量变化而作用在阀芯上有使阀口关小的趋势的力,与阀的流量有关。(2)瞬态液动力:滑阀在移动过程中,阀腔液流因加速或减速而作用在阀芯上的力,与移动速度有关。3)液压卡紧现象卡紧原因:脏物进入缝隙;温度升高,阀芯膨胀;但主要原因是滑阀副几何形状和同心度变化引起的径向不平衡力的作用,其主要包括:a阀芯和阀体间无几何形状误差,轴心线平行但不重合b 阀芯因加工误差而带有倒锥,轴心线平行但不重合c 阀芯表面有局部突起减小径向不平衡力措施:1) 提高制造和装配精度2) 阀芯上开环形均压槽液压控制元件,流量控制阀液压系统中执行元件运动速度的大小,由输入执行元件的油液流量的大小来确定。流量控制阀就是依靠改变阀口通流面积(节流口局部阻力)的大小或通流通道的长短来控制流量的控制阀。常用的流量控制阀有普通节流阀、压力补偿和温度补偿调速阀、溢流节流阀和分流集流阀等。一、流量控制原理及节流口形式 节流阀的节流口通常有三种基本形式:薄壁小孔、细长小孔和厚壁小孔。为保证流量稳定、节流口的形式以薄壁小孔较为理想。 节流阀是一种可以在较大范围内以改变液阻来调节流量的元件。因此可以通过调节节流阀的液阻,来改变进入液压缸的流量,从而调节液压缸的运动速度。 液压传动系统对流量控制阀的主要要求有:1)较大的流量调节范围,且流量调节要均匀。2)当阀前、后压力差发生变化时,通过阀的流量变化要小,以保证负载运动的稳定。3)油温变化对通过阀的流量影响要小。4)液流通过全开阀时的压力损失要小。5)当阀口关闭时,阀的泄漏量要小。二、普通节流阀 下图所示为一种普通节流阀的结构和图形符号。这种节流阀的节流通道是轴间三角槽式。这种节流阀的进出油口可互换。三、节流阀的压力和温度补偿节流阀的压力补偿有两种方式:一种是将定差减压阀与节流阀串联起来,组合而成调速阀;另一种是将稳压溢流阀与节流阀并联起来,组织成溢流节流阀。这两种压力补偿方式是利用流量变动所引起油路压力的变化,通过阀芯的负反馈动作,来自动调节节流部分的压力差,使其基本保持不变。 油温的变化也必然会引起油液粘度的变化,从而导致通过节流阀的流量发生相应的改变,为此出现了温度补偿调速阀。1调速阀 调速阀是在节流阀前面串接一个定差减压阀1组合而成。下图为其工作原理图。液压泵的出口(即调速阀的进口)压力 ,由溢流阀调定,基本上保持恒定。调速阀出口处的压力 由液压缸负载L决定。 因为弹簧刚度较低,且工作过程中减压阀阀芯位移很小,可以认为只基本保持不变。故节流阀两端压力差也基本保持不变,这就保证了通过节流阀的流量稳定。 节流阀的流量随压力差变化较大,而调速阀在压力差大于一定数值后,流量基本上保持恒定。 当压力差很小时,由于减压阀阀芯被弹簧推至最下端,减压阀阀口全开,不起稳定节流阀前 后压力差的作用,故这时调速阀的性能与节流阀相同,所以调速阀正常工作时,至少要求有0.40.5MPa以上的压力差,图b、c为其图形符号。温度补偿调速阀温度补偿调速回的压力补偿原理部分与普通调速阀相同。如何正确选择阀门电动装置阀门电动装置是实现阀门程控、自控和遥控不可缺少的设备,其运动过程可由行程、转矩或轴向推力的大小来控制。由于阀门电动装置的工作特性和利用率取决于阀门的种类、装置工作规范及阀门在管线或设备上的位置,因此,正确选择阀门电动装置,对防止出现超负荷现象(工作转矩高于控制转矩)至关重要。 通常,正确选择阀门电动装置的依据如下:操作力矩 操作力矩是选择阀门电动装置的最主要参数,电动装置输出力矩应为阀门操作最大力矩的1.21.5倍。操作推力 阀门电动装置的主机结构有两种:一种是不配置推力盘,直接输出力矩;另一种是配置推力盘,输出力矩通过推力盘中的阀杆螺母转换为输出推力。输出轴转动圈数 阀门电动装置输出轴转动圈数的多少与阀门的公称通径、阀杆螺距、螺纹头数有关,要按M=H/ZS计算(M为电动装置应满足的总转动圈数,H为阀门开启高度,S为阀杆传动螺纹螺距,Z为阀杆螺纹头数)。阀杆直径 对多回转类明杆阀门,如果电动装置允许通过的最大阀杆直径不能通过所配阀门的阀杆,便不能组装成电动阀门。因此,电动装置空心输出轴的内径必须大于明杆阀门的阀杆外径。对部分回转阀门以及多回转阀门中的暗杆阀门,虽不用考虑阀杆直径的通过问题,但在选配时亦应充分考虑阀杆直径与键槽的尺寸,使组装后能正常工作。输出转速 阀门的启闭速度若过快,易产生水击现象。因此,应根据不同使用条件,选择恰当的启闭速度。阀门电动装置有其特殊要求,即必须能够限定转矩或轴向力。通常阀门电动装置采用限制转矩的连轴器。当电动装置规格确定之后,其控制转矩也就确定了。一般在预先确定的时间内运行,电机不会超负荷。但如出现下列情况便可能导致超负荷:一是电源电压低,得不到所需的转矩,使电机停止转动;二是错误地调定转矩限制机构,使其大于停止的转矩,造成连续产生过大转矩,使电机停止转动;三是断续使用,产生的热量积蓄,超过了电机的允许温升值;四是因某种原因转矩限制机构电路发生故障,使转矩过大;五是使用环境温度过高,相对使电机热容量下降。过去对电机进行保护的办法是使用熔断器、过流继电器、热继电器、恒温器等,但这些办法各有利弊。对电动装置这种变负荷设备,绝对可靠的保护办法是没有的。因此,必须采取各种组合方式,归纳起来有两种:一是对电机输入电流的增减进行判断;二是对电机本身发热情况进行判断。这两种方式,无论那种都要考虑电机热容量给定的时间余量。通常,过负荷的基本保护方法是:对电机连续运转或点动操作的过负荷保护,采用恒温器;对电机堵转的保护,采用热继电器;对短路事故,采用熔断器或过流继电器。液压与气动标准大全一、采标情况:idt或IDT表示等同采用;eqv或MOD表示等效或修改采用;neq表示非等效采用。二、国家标准GB/T 786.11993(2001*) 液压气动图形符号eqv ISO 1219-1:1991GB/T 23462003 流体传动系统及元件 公称压力系列ISO 2944:2000,MODGB/T 23471980(1997) 液压泵及马达公称排量系列eqv ISO 3662:1976GB/T 23481993(2001*) 液压气动系统及元件 缸内径及活塞杆外径neq ISO 3320:1987GB/T 23491980(1997) 液压气动系统及元件 缸活塞行程系列eqv ISO 4393:1978GB/T 23501980(1997) 液压气动系统及元件 活塞杆螺纹型式和尺寸系列eqv ISO 4395:1978GB/T 23511993 液压气动系统用硬管外径和软管内径neq ISO 4397:1978GB/T 23522003 液压传动 隔离式蓄能器 压力和容积范围及特征量ISO 5596:1999,IDTGB/T 2353.11994 液压泵和马达安装法兰和轴伸的尺寸系列及标记neq ISO 3019-2:1986 第一部分:二孔和四孔法兰和轴伸GB/T 2353.21993(2001*) 液压泵和马达 安装法兰与轴伸的尺寸系列和标记液压系统中控制阀起什么作用?通常分为几大类?液压系统中的执行元件(如液压缸、液压油马达)在工作时,需要经常地启动、制动、换向和调节运动速度及适应外负载的变化,因此就要有一套对机构进行控制和调节的液压元件,通常用控制阀来完成。它对外不做功,仅用于控制执行元件,使其满足主机工作性能要求。 1、控制阀按其功能分类(1)方向控制阀,这类阀,如单向阀和换向阀等,用于控制油流方向,以实现执行元件的启动、停止、前进和后退。(2)压力控制阀,这类阀,如溢流阀、减压阀和顺序阀等,用于控制液压系统中的压力,以满足执行元件所需要的力、转矩或工作程序的控制。(3)流量控制阀,这类阀,如节流阀和调速阀等,用于控制液压系统中的油液流量的大小,以实现执行元件所需要的运动速度。2、控制阀按其连接方式分类(1)管式连接,管式阀采用螺纹连接,它直接串联在系统的管路上,不需要专用的连接板。(2)板式连接,板式阀需要专用的连接板,将阀用螺钉装在连接板上,管子与连接板相连,板的前面安装阀,板的后面接油管。(3)法兰连接,流量大于300L/min时,用法兰连接。在管子端部焊接法兰盘,用螺钉与阀体连接。(4)集成块式,集成块是一块通用化的六面体,四周的
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号