资源预览内容
第1页 / 共4页
第2页 / 共4页
第3页 / 共4页
第4页 / 共4页
亲,该文档总共4页全部预览完了,如果喜欢就下载吧!
资源描述
直线形一、三角形1、三角形的分类(1)按边分(2)按角分2、三角形的一些重要性质(1)边与边的关系:任意两边之和(或差)大于(或小于)第三边(2)角与角的关系:三角形三内角之和等于180;一个外角大于任何一个和它不相邻的内角且等于和它不相邻的两内角之和3、全等三角形的定义能够完全重合的两个三角形叫做全等三角形4、全等三角形的判定(1)有两边和它们的夹角对应相等的两个三角形全等(简称“SAS”)(2)有两角和它们的夹边对应相等的两个三角形全等(简称“ASA”)(3)有两角和其中一角的对边对应相等的两个三角形全等(简称“AAS”)(4)有三边对应相等的两个三角形全等(简称“SSS”)(5)有斜边和一条直角边对应相等的两个直角三角形全等(简称“HL”)5、全等三角形的性质(1)全等三角形的对应角相等,对应线段(边、高、中线、角平分线)相等(2)全等三角形的周长相等、面积相等6、等腰三角形的性质(1)等腰三角形的两个底角相等(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“等腰三角形三线合一”)7、等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“三角形等角对等边”)8、等边三角形的性质等边三角形的三边都相等,三个角都相等,每一个角都等于609、等边三角形的判定(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形是等边三角形(3)有一个角是60的等腰三角形是等边三角形10、直角三角形的性质(1)直角三角形的两锐角互余(2)直角三角形中30角所对的直角边等于斜边的一半(3)直角三角形中,斜边上的中线长等于斜边长的一半(4)直角三角形中,两直角边的平方和等于斜边的平方11、直角三角形的判定(1)有一个角是直角的三角形是直角三角形(2)有一边的中线等于这边的一半的三角形是直角三角形(3)若一个三角形中有两边的平方和等于第三边的平方,则第三边所对的角是直角二、角的平分线、线段的垂直平分线1、角平分线的性质定理及逆定理性质定理:角平分线上的点到角两边的距离相等.逆定理:到角两边距离相等的点在角的平分线上.2、线段的垂直平分线的性质定理、逆定理性质定理:线段的垂直平分线上的点和这条线段的两个端点的距离相等.逆定理:和这条线段的两个端点的距离相等的点在这条线段的垂直平分线上.三、多边形与平行四边形1、多边形的定义:在平面内,由n(n3)条线段首尾顺次连接所构成的图形叫做n边形.2、n边形的内角和定理:n边形的内角和等于(n2)180.3、n边形的外角和定理:任意一个n边形的外角和都等于360.4、平行四边形的定义、判定和性质名称判定性质平行四边形1、两组对边分别平行的四边形(定义)1、两组对边平行且相等2、两组对边分别相等的四边形2、两组对角相等3、两条对角线互相平分的四边形3、两条对角线互相平分4、两组对角相等的四边形4、S=ab(a、b分别表示底和这一底上的高)5、一组对边平行且相等的四边形5、是中心对称图形(对称中心为对角线交点)四、特殊平行四边形矩形、菱形、正方形的定义、判定及性质名称判定性质矩形1、有一个角是直角的平行四边形(定义)2、有三个角是直角的四边形3、对角线相等的平行四边形除具有平行四边形的性质外,还具有1、四个角都是直角2、对角线相等3、S=ab(a、b表示长和宽)4、既是中心对称图形,又是轴对称图形推论:直角三角形斜边上的中线等于斜边的一半.菱形1、有一组邻边相等的平行四边形(定义)2、四条边都相等的四边形3、对角线互相垂直的平行四边形除具有平行四边形的性质外,还有1、四条边都相等2、对角线垂直,每一条对角线平分一组对角3、(l1,l2表示两对角线长)4、既是中心对称图形,又是轴对称图形正方形1、有一个角是直角,一组邻边相等的平行四边形(定义)2、一组邻边相等的矩形3、一个角是直角的菱形4、对角线相等且垂直的平行四边形除具有平行四边形、矩形、菱形的性质外,还具有1、对角线与边夹角为452、S=a2(a表示边长)五、梯形1、梯形、等腰梯形、直角梯形的定义,判定与性质,见下表:名称判定性质一般梯形一组对边平行另一组对边不平行的四边形(定义)1、一组对边平行,另一组对边不平行. 2、(a,b,h分别表示上底,下底和高).或S=lh(l表示中位线)等腰梯形1、两腰相等的梯形(定义)2、同一底上的两个角相等的梯形3、两条对角线相等的梯形除具有一般梯形的性质外,还有1、两腰相等,同一底上的两个角相等2、对角互补,对角线相等3、是轴对轴图形直角梯形有一个角是直角的梯形(定义)除一般梯形的性质外,还有:一底角是直角2、三角形、梯形的中位线定理:三角形(或梯形)的中位线平行于底边(或两底),并且等于底边(或两底和)的一半.3、平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等. 4、平行四边形、菱形、矩形、等腰梯形、直解梯形都是特殊四边形,它们之间的包含关系如图. 六、轴对称、中心对称与图形的折叠问题1、轴对称和轴对称图形定义:如果沿着一条直线对折,两个图形能够互相重合,那么这两个图形叫做以这条直线为对称轴的对称图形;如果沿着一条直线对折,一个图形在这条直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.性质:(1)关于轴对称的两个图形是全等形;(2)对称轴垂直平分对称点的连线;(3)两个图形关于某直线对称,它们的对应线段或其延长线的交点在对称轴上。(4)两个图形的对称点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.2、中心对称和中心对称图形定义:如果绕着一个定点旋转180后,两个图形中的每一个能够和另一个的原来的位置互相重合,那么这两个图形叫做关于这个定点成中心对称;如果绕着一定点旋转180后,一个图形的一部分能够和另一部分的原来位置互相重合,那么这个图形叫做中心对称图形.性质:(1)关于中心对称的两个图形是全等形;(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分,这个性质的逆命题也成立.
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号