资源预览内容
第1页 / 共14页
第2页 / 共14页
第3页 / 共14页
第4页 / 共14页
第5页 / 共14页
第6页 / 共14页
第7页 / 共14页
第8页 / 共14页
第9页 / 共14页
第10页 / 共14页
亲,该文档总共14页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2021年江苏省常州市中考数学试卷与答案2021年江苏省常州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分)13的相反数是()ABC3D32若代数式有意义,则实数x的取值范围是()Ax1Bx3Cx1Dx33如图是某几何体的三视图,该几何体是()A圆柱B正方体C圆锥D球4如图,在线段P A、PB、PC、PD中,长度最小的是()A线段P A B线段PB C线段PC D线段PD5若ABCABC,相似比为1:2,则ABC与ABC的周长的比为()A2:1B1:2C4:1D1:46下列各数中与2+的积是有理数的是()A2+B2CD27判断命题“如果n1,那么n210”是假命题,只需举出一个反例反例中的n可以为()A2BC0D8随着时代的进步,人们对PM2.5(空气中直径小于等于2.5微米的颗粒)的关注日益密切某市一天中PM2.5的值y1(ug/m3)随时间t(h)的变化如图所示,设y2表示0时到t时PM2.5的值的极差(即0时到t时PM2.5的最大值与最小值的差),则y2与t的函数关系大致是()ABCD二、填空题(本大题共10小题,每小题2分,共20分。不需写出解答过程,请把答案直接填写在答题卡相应位置上)9计算:a3a104的算术平方根是11分解因式:ax24a12如果35,那么的余角等于13如果ab20,那么代数式1+2a2b的值是14平面直角坐标系中,点P(3,4)到原点的距离是15若是关于x、y的二元一次方程ax+y3的解,则a16如图,AB是O的直径,C、D是O上的两点,AOC120,则CDB17如图,半径为的O与边长为8的等边三角形ABC的两边AB、BC都相切,连接OC,则tanOCB18如图,在矩形ABCD中,AD3AB3,点P是AD的中点,点E在BC上,CE2BE,点M、N在线段BD上若PMN是等腰三角形且底角与DEC相等,则MN 三、解答题(本大题共10小题,共84分)19(8分)计算:(1)0+()1()2;(2)(x1)(x+1)x(x1)20(6分)解不等式组并把解集在数轴上表示出来21(8分)如图,把平行四边形纸片ABCD沿BD折叠,点C落在点C处,BC与AD 相交于点E(1)连接AC,则AC与BD的位置关系是;(2)EB与ED相等吗?证明你的结论22(8分)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图(1)本次调查的样本容量是,这组数据的众数为元;(2)求这组数据的平均数;(3)该校共有600名学生参与捐款,请你估计该校学生的捐款总数23(8分)将图中的A型(正方形)、B型(菱形)、C型(等腰直角三角形)纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中(1)搅匀后从中摸出1个盒子,盒中的纸片既是轴对称图形又是中心对称图形的概率是;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的2个盒子中摸出1个盒子,把摸出的2个盒中的纸片长度相等的边拼在一起,求拼成的图形是轴对称图形的概率(不重叠无缝隙拼接)24(8分)甲、乙两人每小时共做30个零件,甲做180个零件所用的时间与乙做120个零件所用的时间相等甲、乙两人每小时各做多少个零件?25(8分)如图,在?OABC中,OA2,AOC45,点C在y轴上,点D是BC 的中点,反比例函数y(x0)的图象经过点A、D(1)求k的值;(2)求点D的坐标26(10分)【阅读】数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”“算两次”也称做富比尼原理,是一种重要的数学思想【理解】(1)如图1,两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个梯形用两种不同的方法计算梯形的面积,并写出你发现的结论;(2)如图2,n行n列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式:n2;【运用】(3)n边形有n个顶点,在它的内部再画m个点,以(m+n)个点为顶点,把n边形剪成若干个三角形,设最多可以剪得y个这样的三角形当n3,m3时,如图3,最多可以剪得7个这样的三角形,所以y7当n4,m2时,如图4,y;当n5,m时,y9;对于一般的情形,在n边形内画m个点,通过归纳猜想,可得y(用含m、n的代数式表示)请对同一个量用算两次的方法说明你的猜想成立27(10分)如图,二次函数yx2+bx+3的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(1,0),点D为OC的中点,点P在抛物线上(1)b;(2)若点P在第一象限,过点P作PHx轴,垂足为H,PH与BC、BD分别交于点M、N是否存在这样的点P,使得PMMNNH?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点P的横坐标小于3,过点P作PQBD,垂足为Q,直线PQ与x轴交于点R,且SPQB2SQRB,求点P的坐标28(10分)已知平面图形S,点P、Q是S上任意两点,我们把线段PQ的长度的最大值称为平面图形S的“宽距”例如,正方形的宽距等于它的对角线的长度(1)写出下列图形的宽距:半径为1的圆:;如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:;(2)如图2,在平面直角坐标系中,已知点A(1,0)、B(1,0),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的宽距为d若d2,用直尺和圆规画出点C所在的区域并求它的面积(所在区域用阴影表示);若点C在M上运动,M的半径为1,圆心M在过点(0,2)且与y轴垂直的直线上对于M上任意点C,都有5d8,直接写出圆心M的横坐标x的取值范围2021年江苏省常州市中考数学试卷答案1C2D3A4B5B6D7A8B9a210211a(x+2)(x2)125513514515116301718619解:(1)0+()1()21+230;(2)(x1)(x+1)x(x1)x21x2+xx1;20解:解不等式x+10,得:x1,解不等式3x8x,得:x2,不等式组的解集为1x2,将解集表示在数轴上如下:21解:(1)连接AC,则AC与BD的位置关系是ACBD,故答案为:ACBD;(2)EB与ED相等由折叠可得,CBDCBD,ADBC,ADBCBD,EDBEBD,BEDE22解:(1)本次调查的样本容量是6+11+8+530,这组数据的众数为10元;故答案为:30,10;(2)这组数据的平均数为12(元);(3)估计该校学生的捐款总数为600127200(元)23解:(1)搅匀后从中摸出1个盒子,可能为A型(正方形)、B型(菱形)或C型(等腰直角三角形)这3种情况,其中既是轴对称图形又是中心对称图形的有2种,盒中的纸片既是轴对称图形又是中心对称图形的概率是;故答案为:;(2)画树状图为:共有6种等可能的情况,其中拼成的图形是轴对称图形的情况有2种:A和C,C和A,拼成的图形是轴对称图形的概率为24解:设甲每小时做x个零件,则乙每小时做(30x)个零件,由题意得:,解得:x18,经检验:x18是原分式方程的解,则301812(个)答:甲每小时做18个零件,则乙每小时做12个零件25解:(1)OA2,AOC45,A(2,2),k4,y;(2)四边形OABC是平行四边形OABC,ABx轴,B的横纵标为2,点D是BC的中点,D点的横坐标为1,D(1,4);26解:(1)有三个Rt其面积分别为ab,ab和c2直角梯形的面积为(a+b)(a+b)由图形可知:(a+b)(a+b)ab+ab+c2整理得(a+b)22ab+c2,a2+b2+2ab2ab+c2,a2+b2c2故结论为:直角长分别为a、b斜边为c的直角三角形中a2+b2c2(2)n行n列的棋子排成一个正方形棋子个数为n2,每层棋子分别为1,3,5,7,2n1由图形可知:n21+3+5+7+2n1故答案为1+3+5+7+2n1(3)如图4,当n4,m2时,y6,如图5,当n5,m3时,y9方法1对于一般的情形,在n边形内画m个点,第一个点将多边形分成了n个三角形,以后三角形内部每增加一个点,分割部分增加2部分,故可得yn+2(m1)方法2以ABC的二个顶点和它内部的m个点,共(m+3)个点为顶点,可把ABC 分割成3+2(m1)个互不重叠的小三角形以四边形的4个顶点和它内部的m个点,共(m+4)个点为顶点,可把四边形分割成4+2(m1)个互不重叠的小三角形故以n 边形的n个顶点和它内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成n+2(m1)个互不重叠的小三角形故可得yn+2(m1)故答案为:6,3;n+2(m1)27解:(1)二次函数yx2+bx+3的图象与x轴交于点A(1,0)1b+3解得:b2故答案为:2(2)存在满足条件呢的点P,使得PMMNNH二次函数解析式为yx2+2x+3当x0时y3,C(0,3)当y0时,x2+2x+30解得:x11,x23A(1,0),B(3,0)直线BC的解析式为yx+3点D为OC的中点,D(0,)直线BD的解析式为y+,设P(t,t2+2t+3)(0t3),则M(t,t+3),N(t,t+),H(t,0)PMt2+2t+3(t+3)t2+3t,MNt+3(x+)t+,NHt+MNNHPMMNt2+3tt+解得:t1,t23(舍去)P(,)P的坐标为(,),使得PMMNNH(3)过点P作PFx轴于F,交直线BD于EOB3,OD,BOD90BDcosOBDPQBD于点Q,PFx轴于点FPQEBQRPFR90PRF+OBDPRF+EPQ90EPQOBD,即cosEPQcosOBD在RtPQE中,cosEPQPQPE在RtPFR中,cosRPFPRPFSPQB2SQRB,SPQBBQ?PQ,SQRBBQ?QRPQ2QR设直线BD与抛物线交于点G+x2+2x+3,解得:x13(即点B横坐标),x2点G横坐标为设P(t,t2+2t+3)(t3),则E
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号