资源预览内容
第1页 / 共72页
第2页 / 共72页
第3页 / 共72页
第4页 / 共72页
第5页 / 共72页
第6页 / 共72页
第7页 / 共72页
第8页 / 共72页
第9页 / 共72页
第10页 / 共72页
亲,该文档总共72页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
Chapter 1 Introduction教材:M.E.Peskin ,D.V.Schroeder ,An Introduction to Quantum Field Theory参考书:L.H.Ryder,Quantum Field Theory1、为什么要提出QFT?Q.M(Quantum Mechanics)以 Schrodinger Eq为中心:可以描述(局限):(1)非相对论量子力学(NRQM:None Relativistic Quantum Mechanics) (2)可以描述多体(3)粒子数守恒S.R(Special Relativity)以质能方程为中心:(1)质能转换;(2)高能过程;(3)粒子数目、种类均不守恒;Schrodinger Eq.+S.R.=RQMRQM(1)Klein-Gordon Eq.(局限)Negative Energy Negative Probobality (2)Dirac Eq. (局限) Negative ProbobalityRQM是不能自洽的理论解决办法:对比电磁场方程:Maxwell Eqs,将K-G Eq.与Dirac Eq.改造成场方程RQF波粒二象性的体现:波动性场量子化粒子性 (均为参数) 场算符The first physical QFT:Quantum Electrodynamics (QED:)微扰量子场论为弱耦合理论,要求耦合常数是小量。QFT计算方式:Feynman Diagram展开。四种基本作用:S、W、EM QFT;(S作用的渐进自由性使得它可以被QFT描述);G GR约定标记:“God-Given”Units:Length=Time=Energy-1=Mass-1引力能标:Mpl=1.221019GeV,故不用QFT描述。其它标记:(教材xixxxi页)2、A Brife Review of Classical Field Theory(1)Basic Lagrangian Mechanics:Lagrangian: Action:The Principle of least action:Dynamics(2)Lagrangian Field Theory:广义坐标:, 场量:,视为独立的广义坐标。Lagrangian Density:; Action:;QFT为定域场论,要求:;【原则上可以有:】Euler Lagrange Eq. (From the principle of least action):The second term can be turned into a surface integral over the boundary of the four-dimension spactime region of intergration.Since the initial and final field configurations are assumed given, is zero at the temporal beginning and end of this region.Therefore it vanished. Euler Lagrange Eq:(3)Hamiltonian Field Theory:Conjugate momentum: ;Conjugate momentum density:Hamiltonian and Lagrangian:Hamiltonian Density: 整理于:2010-11-9Examples:(Find the Lagrangian of the system;通过动力学方程找出体系的Lagrangian)(1)、Newtonian Mechanics: (2)、Klein Gordon Field: The First term is a surface integral,therefore it is vanished. In QFT, should be Lorentz scalar.3、Noethers TheoremDefination of symmetry:We call the transformation a symmetry if it leaves the equations of motion invariant. By Euler-Lagrange Eq,the second and third term is vanished.Def: Therefore: ; is conserved.Conserved Charge: Example:Find the conserved Noether current by .(注:Complex scalar field thoery:自由度 2n;和为独立的两个自由度: 独立,所以)Lagrangian is unchanged under the transformation: , is a const. Neother Theorem applied in spacetime transformation: Def: ; is Energy-Momentum Tensor.The conserved Charge:Physical Momentum:整理于2010-11-10Chapter 2 The Quantization of Klein-Gordon FieldK-G Field :Real Scalar Field: Complex Scalar Field: Quantization In N-particles QM:Step 1:Find the Lagrangian L of the system;Step 2:Give the conjuate momentum p:Step 3:Classical Possion parentheses transform into Quantised Possion parentheses: 把量子化程式用到K-G场:1、 Lagrangian:2、 Conjuate momentum density:3、 Give the Commutation:Equal time Commutation Relations: ; 与QM的情况对比: For real K-G Field: Harmonic Oscillators (Classical Field)经典场中的量子谐振子:正则变换: (对比) In K-G Field:;Fourier Transformation:(解为平面波) and is annihilation and creation operator. Execise: Check this: Zero Point Energy:The second term is proportional to ,an infinite c-number.It is simply the sum over all modes of the Zero-Point Energy ,so its presence is completely expected,if somewhat disturbing.Fortunately,this infinite energy shift cannot be detected experimentally.We will therefore ignore the infinite constant term in all of our calculation.Physical Momentum:(零点动量不要, 空间各项同性取平均为零。)K-G Field In Spacetime: is Lorentz invariant .It is easy to check this with the identity of the delta function:In the Heisenberg Picture:The Heisenberg equation of motion:At last, andcan be written as:Which is Lorentz invariant.整理于2010-11-11 is always positive(解决RQM中Negative Energy Problem)A negative-frequency solution of the field equation,being Hermitian conjugate of a positive-frequency solution,has as its coefficient the operator that creates a particle in that positive-energy single particle wavefunction.Causality in Klein Gordon Fieldif (spacelike) 无因果 The Propagator of K-G FieldFreedom Particles: Source: Green Function of K-G Eq: Fourier Transformation: 有奇性:“T” is the“time-ordering”symbol; is called Feynman Propagation for a Klein Gordon Field particle.“time-ordering”symbol T:for any functions:A(t1) and B(t2)Problems:From Peskins Book2.1Solutions:(a) Lagrangian Density:Treat as the field : By Euler-Lagrange Eq:() By Lorentz Gauge:;Therefore the Maxwell Eqs are: and (b) is defined by: ; ; Therefore:Energy-Momentun Tensor
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号