资源预览内容
第1页 / 共127页
第2页 / 共127页
第3页 / 共127页
第4页 / 共127页
第5页 / 共127页
第6页 / 共127页
第7页 / 共127页
第8页 / 共127页
第9页 / 共127页
第10页 / 共127页
亲,该文档总共127页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
文档仅供参考最新电大数学思想和方法期末考试试卷汇总考试答题注意事项:1、 考生答题前,先将自己的姓名、准考证号等信息填写清楚,同时将条形码准确粘贴在考生信息条形码粘贴区。2、考试答题时,选择题必须使用2B铅笔填涂;非选择题必须使用0、5毫米黑色字迹的签字笔书写,字体工整、笔迹清晰。3、请考生按照题号顺序,在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4、请考生保持答题卡面清洁,不要折叠、弄破、弄皱,不准使用涂改液、修正液、刮纸刀。一、 填空题1古代数学大致能够分为两种不同的类型,一种是崇尚逻辑推理,以【几何原本】为代表;一种是长于计算和实际应用,以【九章算术】为典范。2、在数学中,建立公理体系最早的是几何学,而这方面的代表著作是古希腊欧几里得【几何原本】3、【几何原本】所开创的公理化方法不但成为一种数学陈述模式,而且还被移植到其它学科,而且促进她们的发展。4、推动数学发展的原因主要有两个:1实践的需要,2理论的需要数学思想方法的几次突破就是这两种需要的结果。5、变量数学产生的数学基础是解析几何,标志是微积分6、数学基础知识和数学思想方法是数学教学的两条主线。7、随机现象的特点是在一定条件下,看您发生某种结果,也困难不发生某种结果。8、等腰三角形的抽象过程,就是把一个新的特点两边相等加入到三角形概念中去,使三角形概念得到强化。9、学生理解或掌握数学思想方法的过程有如下三个主要阶段,潜意识阶段、明朗化阶段、深刻理解阶段10、数学的统一性是客观世界统一性额反映,是数学中各个分支固有的内在联系的体现,它表现为数学的各个分支相互渗透和相互结合的趋势。11、强抽象就是指经过把一些新特点加入到某一概念中去而形成新概念的抽象过程。12、菱形概念的抽象过程就是把一个新的特点一组邻边相等加入到平行四边形概念中去,使平行四边形概念得到了强化。13、演绎法和归纳法被认为是理性思维中两种最重要的推理方法。14、所谓类比是指由一类事物所具有的某种属性,能够推断和其类似的事物也具有该属性的一种推理方法常称这种方法为类比法,也称类比推理、15、反例反驳的理论依据是形式逻辑的矛盾律16、猜想具有两个显著特点:具有一定的科学性、具有一定的推断性17、三段论是演绎推理的主要形式,三段论由大前提、小前提、结论三部份组成。18、化归方法是指把待解决的问题,经过某种转化过程,归结到一类已经能解决或较易解决的问题中,最终获得原问题的答的一种方法19、在化归过程中,应遵循的原则是简单化原则、熟悉化原则、和谐化原则20、在计算机时代,计算方法已经成为和理论方法,实验方法并列的第三种科学方法。21、算法具有下面特点有限性、确定性、有效性22、算法大致能够分为多项式算法和指数型算法23、匀速直线运动的数学模型是一次函数24、所谓数学模型方法是利用数学模型解决问题的一般数学方法25、分类必须遵循的原则是不重复、无遗漏、标准同一。26、所谓数形结合方法,就是在研究数学问题时,由数思形、见形思数、数形结合考虑问题的一种思想方法。27、所谓特殊化是指在研究问题过程中从对象的一个给定集合出发,进而考虑某个包含于该集合的较小集合的思想方法。28、面对一个问题,经过认真的观察和思考,经过归纳或类比提出猜想,然后从两个方面入手演绎证明此猜想为真、或寻找反例说明此猜想为假,并进一步修正或否定此猜想。29、化归方法的三个要素是化归对象、化归目标、化归途径30、依据学生掌握数学思想方法的过程由潜意识、明朗化、深刻理解三个阶段,课相应地将数学思想方法教学设计成多次孕育、初步理解、简单应用三个阶段。31、数学思想方法是联系数学知识和数学能力地纽带,是数学科学地灵魂,它对发展学生的数学能力,经过学生的思维品质都具有十分重要的作用。32、一个概括过程包含比较、区分、扩张和分析等几个主要环节。33、算法的有效性是指假如使用该算法从它的初始数据出发,能够得到这一问题的正确解决34、数学从研究对象大致能够分成两大类,数量关系、空间形式二、判断题只要答是或否1、计算机是数学的创造物,又是数学的创造者。是2、抽象得到的新概念和表示原来的对象的概念之间一定有种属关系否3、一个数学理论体系内的每一个命题都必须给出证明否4、九章算术不包含代数、几何内容否5、即没有脱离数学知识的数学思想方法,也没有不包含数学思想方法的数学知识是6、数学模型方法在生物学。经济学、军事学等领域没应用否7、在解决数学解时,往往需要综合运用多种数学思想方法才能取得效果是8、假如某一类问题存在算法,而且构造出这个算法,就一定能求出该解的精确解。否9、对同一数学对象,若选取不同的标准,能够得到不同的分类是10、数学思想方法教学隶属于教学范畴,只要贯彻一般的数学教学原则,就可实现数学思想方法的教学目标否11、由类比法推得的结论必定正确否12、有时特殊情况能和一般情况等价否13、完全归纳法实质上属于演绎推理的范畴是14、古希腊的柏拉图曾在她的学校门口张榜声明,不懂几何的人不得入内,这是因为她的学校里所学习的课程要用到很多几何知识否15、完全归纳法的一般推理形式是:设s=A1 A2 An ,由于A1 A2 An 具有性质P,因此推断几何s中的每一个对象都具有性质P否二简答题1、为什么说【几何原本】是一个封闭的演绎体系?【几何原本】是数学中最早形成的演绎体系。在形式上,它是以少数原始概念,如点、线、面等等,和不证明的公设和公里为基础,运用亚里士多德所创立的逻辑学,把当时所知的几何学中的主要命题全部推演出来,从而形成一个井然有序的整体。在这个整体中,除了推导时所需要的逻辑规则外,每个定理的证明所采纳的论据均是公设、公理或前面已经证明过的定理,因此【几何原本】是一个封闭的演绎体系。另外,从【几何原本】和当时的社会生产、生活的关系看,它的理论体系的理论体系回避任何和社会生产现实生活有关的应用问题,因此对于社会生活的各个领域来说,它也是封闭的。因此,【几何原本】是一个封闭的演绎体系。2、试对【九章算术】思想方法的一个特点算法化内容加以说明?【九章算术】在每一章内先列举若干个实际问题,并对每个问题都给出答案,然后再给出”术”,作为一类问题的共同解法。以后遇到其它同类问题,只要按”术”给出的程序去做就一定能求出问题的答案,书中的”术”就是算法。3、简述确定性现象、随机现象的特点,以及确定性数学的局限性?人们常常遇到两类截然不同的现象,一类是决定性现象。其特点是:在一定的条件下,其结果完全被决定,或完全肯定,或完全否定,不存在其它可能。即这种现象在一定的条件下必定会发生某种结果,或必定不会发生某种结果另一类是随机现象,其特点是:在一定的条件下,可能发生某种结果,也可能不发生某种结果。在数学学科中,人们常常把研究决定性现象数量规律的那些数学分支称为确定数学。用这些的分支来定量地描述某些决定性现象的运动和变化过程,从而确定结果。可是由于随机现象条件和结果之间不存在必定性联系,因此不能用确定数学来加以定量描述。同时确定数学也无法定量地揭示大量同类随机现象中所蕴涵的规律性。这些是确定数学的局限所在。4、简述计算机在数学方面的三种新用途?在数学方面,计算机至少有三种新的用途,第一,用来证明一些数学命题,而一般证明这类命题,需要进行异常巨大的计算和演绎工作;第二,用来预测某些数学问题的可能结果;第三,用来作为一种验证某些数学问题结果的正确性的方法。5、简述数学抽象的特点?数学抽象有以下特点:1数学抽象具有无物质性。数学抽象摆脱了客观事物的物质性质,从中抽取其数和形,因而数学抽象具有无物质性。2数学抽象具有层次性:数学概念是数学抽象的结果,可是不同的数学概念又表现出数学抽象的层次性。例如,自然数概念是从客观事物中抽象出来的,字母a表示的数又是在对数的抽象后的结果。3数学抽象过程要凭借分析或直觉;(4)数学的抽象不但有概念抽象还有方法抽象6、简述化归方法在数学教学中的应用?化归方法在数学教学中的功能至少能够归结为以下三个方面:1利用化归方法学习新知识:数学中许多概念的形成过程或数学的定义,就是渗透着化归的思想方法。实数的引进以及运算法则和大小比较的确定,是建立在有理数运算和大小比较的基础上的,它是借助极限来实现这种转化的。2利用化归方法指导解题;3利用化归原则理清知识结构:运用化归思想方法可将零星纷乱的知识编织成一张有序的主次分明的知识网络,做到易懂、易记、易用。7、简述用MM数学模型解决实际问题的基本步骤,并用框图加以表述?用MM方法解决实际问题的基本步骤为1从现实原型抽象概括出数学模型;2在数学模型上进行逻辑推理、论证或演算,求得数学问题的解;3下数学模型过渡到现实原型,即把研究数学模型所得到的结论,返回到现实原型上去,便得到实际问题的解答。MM方法解题的基本步骤框图表示如下: 8、试用框图表示用特殊化方法解决实际问题的一般过程?用特殊化解决问题的一般过程,能够用框图表示,若我们面正确问题A解决起来比较困难,能够先将A特殊化为 ,因为 和A相比较,外延变小,因此内涵势必增多,因此由 所导出的结论 ,它包含的内涵一般也会比较多。把信息 反馈到问题A中,就会为问题解决提供一些新的信息,再去推导结论B就会比较容易一些。若解决问题A仍有困难,即可对A 再次进行特殊化,进一步增加信息量,如此重复多次,最终推得结论B,使问题A得以解决。(若信息不够则重复进行)9简述化归方法的和谐化原则?和谐化是数学内在美的主要内容之一。美和真在数学命题和数学解题中一般是统一的。因此,我们在解题过程中,可依据数学问题的条件或结论以及数、式、形等结构特点,利用和谐美去思考问题,获得解题信息,从而确立解题的总体思路,达到以美启真的作用。例如:10、什么是算法的有限性特点?试举一个不符合有限性特点的例子。一个算法必须在有限步内终止。例如,十进制小数的除法的算法。若取数4、5和3作为初始数据,计算过程为得到的结果为1、5、可是对初始数据20和3,计算过程为无论怎样延续这个过程都不能结束,同时也不会中断、假如在某一处中断过程,我们只能得到一个近似的、步准确的结果。而且假如在某一处中断计算过程已经不是执行原来的算法。可见,十进制小数除法对于20和3这组数不符合算法的”有限性”特点。11、简述培养数学猜想能力的途径?用猜想学习新知识;用猜想探究数学规律用猜想帮助解题。12、简述特殊化方法在数学教学中的应用?答特殊化方法在数学教学中的应用大致有如下几个方面:利用特殊值(图形)解选择题;利用特殊化探求问题结论;利用特例检验一般结果;利用特殊化探索解题思路。13、什么是类比猜想?并举一个例子说明人们运用类比法,依据一类事物所具有的某种属性,得出和其类似的事物也具有这种属性的一种推断性的判断,即猜想,这种思想方法称为类比猜想。例如,分式和分数非常相似,只不过用字母替代数而已。因此,我们能够猜想,分式和分数在定义、基本性质、约分、通分、四则运算等方面都是对应相似的。事实也确是如此。14、什么是归纳猜想?并举一个例子说明。人们运用归纳法,得出对一类现象的某种一般性认识的一种推断性的判断,即猜想,这种思想方法称为归纳猜想。例如,人们在量度了很多圆的周长和半径以后,发现它们的比值总是近似地等于3、14,于是提
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号