资源预览内容
第1页 / 共19页
第2页 / 共19页
第3页 / 共19页
第4页 / 共19页
第5页 / 共19页
第6页 / 共19页
第7页 / 共19页
第8页 / 共19页
第9页 / 共19页
第10页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2019届数学人教版精品资料综合质量评估(第一至第三章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某工厂的一、二、三车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a,b,c,且2b=a+c,则二车间生产的产品数为()A.800B.1000C.1200D.1500【解析】选C.因为2b=a+c,所以二车间抽取的产品数占抽取产品总数的三分之一,根据分层抽样的性质可知,二车间生产的产品数占总数的三分之一,即为3600=1200.2.奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是()A.对立事件B.不可能事件C.互斥但不对立事件D.不是互斥事件【解析】选C.甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.3.(2014北京高考)执行如图所示的程序框图,输出的S值为()A.1B.3C.7D.15【解析】选C.k=0,S=0;S=0+20=1,k=1;S=1+21=3,k=2;S=3+22=7,k=3.退出循环,输出的S值为7.【补偿训练】如图所示程序运行的结果为.t=1i=2WHILEi=5t=tii=i+1WENDPRINTtEND【解析】本程序计算的是t=12345=120.答案:1204.从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中视力情况进行统计,其结果的频率分布直方图如图所示:若某高校A专业对视力的要求在0.9以上,则该班学生中能报A专业的人数为()A.10B.20C.8D.16【解析】选B.视力在0.9以上的频率为(1+0.75+0.25)0.2=0.4,故能报A专业的人数为0.450=20.5.(2014浙江高考)在3张奖券中有一、二等奖各1张,另一张无奖,甲、乙两人各抽取1张,两人都中奖的概率是()A.B.C.D.【解析】选B.设三张券分别用A,B,C代替,A一等奖;B二等奖;C无奖,甲、乙各抽一张共包括(A,B),(A,C),(B,A),(B,C),(C,A),(C,B)6种基本事件,其中甲、乙都中奖包括两种,P=,故选B.6.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为()分数54321人数2010303010A.B.3C.D.【解析】选C.这组数据的平均数是:=3,方差=20(5-3)2+10(4-3)2+30(2-3)2+10(1-3)2=,则这100人成绩的标准差为=.7.某校为了了解学生的身体素质情况,对初三(2)班的50名学生进行了立定跳远、铅球、100米三个项目的测试,每个项目满分为10分.如图是将该班学生所得的三项成绩(成绩均为整数)之和进行整理后,分成5组画出的条形图,已知从左至右前4个小组的频率分别为0.02,0.1,0.12,0.46.下列说法中:学生的成绩27分的共有15人;学生成绩的众数在第四小组(22.526.5)内;学生成绩的中位数在第四小组(22.526.5)范围内.其中正确的说法有()A.0个B.1个C.2个D.3个【解析】选C.5个小组的频率之和为1,且前四个分别为0.02,0.1,0.12,0.46,故第五组的频率是1-(0.02+0.1+0.12+0.46)=0.3,学生的成绩27分的在第五组,总共有50名学生,故第五组共有500.3=15(人),故正确;观察直方图:第四组人数最多,但学生成绩的众数不一定在第四小组(22.526.5)内,故不正确;学生成绩的中位数是第25个数和第26个数的平均数,应该落在第四组,故正确.8.扇形AOB的半径为1,圆心角为90.点C,D,E将弧AB等分成四份.连接OC,OD,OE,从图中所有的扇形中随机取出一个,面积恰为的概率是()A.B.C.D.【解题指南】本题考查扇形面积公式及古典概型概率.解题关键是求出面积为的扇形所对圆心角的度数.【解析】选A.据题意若扇形面积为,据扇形面积公式=1=,即只需扇形圆心角为即可,列举可得这种情况共有3种,而整个基本事件个数共有10种,故其概率为.9.设a0,10)且a1,则函数f(x)=logax在(0,+)内为增函数且g(x)=在(0,+)内也为增函数的概率为()A.B.C.D.【解析】选B.由条件知,a的所有可能取值为a0,10)且a1,使函数f(x),g(x)在(0,+)内都为增函数的a的取值为所以1ab,aB.b,aC.aD.b,1时对应点落在阴影部分中(如图所示).所以有=,N=4M-M,(M+N)=4M,=.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.将参加数学竞赛的1000名学生编号如下:0001,0002,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,从第一部分随机抽取一个号码为0015,则第40个号码为.【解题指南】本题考查系统抽样方法的应用.根据系统抽样方法的定义求解【解析】根据系统抽样方法的定义,得第40个号码对应15+3920=795,即得第40个号码为0795.答案:079514.有一根长为1米的细绳子,随机从中间将细绳剪断,则使两截的长度都大于米的概率为.【解析】如图,将细绳八等分,C,D分别是第一个和最后一个等分点,则在线段CD的任意位置剪断此绳得到的两截细绳长度都大于米.由几何概型的概率计算公式可得,两截的长度都大于米的概率为P=.答案:【举一反三】题目中把“使两截的长度都大于米”改为“使两截之差的绝对值大于米”,那么概率应为多少?【解析】设其中一截为x米,则另一截为(1-x)米,则|x-(1-x)|=|2x-1|,解得x或x,把1米的绳子四等分,则在AB或DE的任意位置剪断,都会使两截之差的绝对值大于米,故所求概率为=.15.盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示).【解析】从中任意取出两个的所有基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(6,7)共21个.而这两个球编号之积为偶数的有(1,2),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,6),(4,5),(4,6),(4,7),(5,6),(6,7)共15个.故所求的概率P=.答案:【一题多解】在21个基本事件中,两个球的编号之积为奇数的有(1,3),(1,5),(1,7),(3,5),(3,7),(5,7)共6个.所以P(编号之积为奇数)=,根据对立事件的概率可求得编号之积为偶数的概率为1-=.答案:16.甲、乙两个人玩一转盘游戏(转盘如图,“C为弧AB的中点”),任意转动转盘一次,指针指向圆弧AC时甲胜,指向圆弧BC时乙胜.后来转盘损坏如图,甲提议连接AD,取AD中点E,若任意转动转盘一次,指针指向线段AE时甲胜,指向线段ED时乙胜.然后继续游戏,你觉得此时游戏还公平吗?答案:,因为P甲P乙(填或=).【解析】连接OE,在直角三角形AOD中,AOE=,DOE=,若任意转动转盘一次,指针指向线段AE的概率是:=,指针指向线段ED的概率是:=,所以乙胜的概率大,即这个游戏不公平.答案:不公平三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)某电脑公司现有A,B,C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各随机选购一种型号的电脑,有关报价信息如图.(1)写出所有选购方案.(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?(直接写出结果即可)【解题指南】利用树状图确定所有选购方案,然后利用古典概型的概率公式进行求解.【解析】(1)画出树状图如图:则选购方案为:(A,D),(A,E),(B,D),(B,E),(C,D),(C,E).(2)A型号电脑被选中的情形为(A,D),(A,E),即基本事件为2种,所以A型号电脑被选中的概率为P=.18.(12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.(1)计算甲班的样本方差.(2)现从乙班这10名同学中随机抽取两名身高不低于173 c
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号