资源预览内容
第1页 / 共19页
第2页 / 共19页
第3页 / 共19页
第4页 / 共19页
第5页 / 共19页
第6页 / 共19页
第7页 / 共19页
第8页 / 共19页
第9页 / 共19页
第10页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1如图,内接于, ,则半径为( )A4B6C8D122如图,为的直径,为上两点,若,则的大小为()A60B50C40D203一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是ABCD4如图,是的直径,是的两条弦,连接,若,则的度数是( )A10B20C30D405在ABC中,C90若AB3,BC1,则的值为()ABCD6圆锥的底面直径为30cm,母线长为50cm,那么这个圆锥的侧面展开图的圆心角为( )A108B120C135D2167如图,在ABC中,点D、E分别在边AB、AC上,则在下列五个条件中:AEDB;DEBC;ADBCDEAC;ADEC,能满足ADEACB的条件有( )A1个B2C3个D4个8某工厂一月份生产机器100台,计划二、三月份共生产机器240台,设二、三月份的平均增长率为x,则根据题意列出方程是()A100(1+x)2=240B100(1+x)+100(1+x)2=240C100+100(1+x)+100(1+x)2=240D100(1x)2=2409下列事件是必然事件的是( )A打开电视机,正在播放篮球比赛B守株待兔C明天是晴天D在只装有5个红球的袋中摸出1球,是红球.10已知点在抛物线上,则点关于抛物线对称轴的对称点坐标为()ABCD二、填空题(每小题3分,共24分)11在直径为4cm的O中,长度为的弦BC所对的圆周角的度数为_.12如图,在等腰直角三角形中,点在轴上,点的坐标为(0,3),若点恰好在反比例函数第一象限的图象上,过点作轴于点,那么点的坐标为_13九章算术是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步”该问题的答案是_步14已知,则的值是_15已知yx2+(1a)x+2是关于x的二次函数,当x的取值范围是0x4时,y仅在x4时取得最大值,则实数a的取值范围是_16方程(x+1)(x2)5化成一般形式是_17如图,的顶点都在方格纸的格点上,则_18已知圆锥的底面半径是3cm,母线长是5cm,则圆锥的侧面积为_cm1(结果保留)三、解答题(共66分)19(10分)如图,在中,的平分线交于,为上一点,以为圆心,以的长为半径画圆(1) 求证:是的切线;(2) 求证:.20(6分)解方程(1)1x16x10;(1)1y(y+1)y121(6分)如图,E是正方形ABCD的CD边上的一点,BFAE于F,(1)求证:ADEBFA;(2)若正方形ABCD的边长为2,E为CD的中点,求BFA的面积,22(8分)如图,已知一个,其中,点分别是边上的点,连结,且(1)求证:;(2)若求的面积23(8分)已知ABC,AB=AC,BD是ABC的角平分线,EF是BD的中垂线,且分别交BC于点E,交AB于点F,交BD于点K,连接DE,DF(1)证明:DE/AB;(2)若CD=3,求四边形BEDF的周长24(8分)为了测量山坡上的电线杆PQ的高度,某数学活动小组的同学们带上自制的测倾器和皮尺来到山脚下,他们在A处测得信号塔顶端P的仰角是45,信号塔底端点Q的仰角为30,沿水平地面向前走100米到B处,测得信号塔顶端P的仰角是60,求信号塔PQ得高度25(10分)用适当的方法解下列一元二次方程:(1); (2)26(10分)如图,四边形OABC是矩形,A、C分别在y轴、x轴上,且OA6cm,OC8cm,点P从点A开始以2cm/s的速度向B运动,点Q从点B开始以1cm/s的速度向C运动,设运动时间为t(1)如图(1),当t为何值时,BPQ的面积为4cm2?(2)当t为何值时,以B、P、Q为顶点的三角形与ABC相似?(3)如图(2),在运动过程中的某一时刻,反比例函数y的图象恰好同时经过P、Q两点,求这个反比例函数的解析式参考答案一、选择题(每小题3分,共30分)1、C【分析】连接OB,OC,根据圆周角定理求出BOC的度数,再由OBOC判断出OBC是等边三角形,由此可得出结论【详解】解:连接OB,OC,BAC30,BOC60OBOC,BC1,OBC是等边三角形,OBBC1故选:C.【点睛】本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键2、B【分析】根据题意连接AD,再根据同弧的圆周角相等,即可计算的的大小.【详解】解:连接,为的直径,故选B【点睛】本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.3、C【解析】分三段讨论:两车从开始到相遇,这段时间两车距迅速减小;相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意故选C4、D【分析】连接AD,由AB是O的直径及CDAB可得出弧BC=弧BD,进而可得出BAD=BAC,利用圆周角定理可得出BOD的度数【详解】连接AD,如图所示:AB是O的直径,CDAB,弧BC=弧BD,BAD=BAC=20BOD=2BAD=40,故选:D【点睛】此题考查了圆周角定理以及垂径定理此题难度不大,利用圆周角定理求出BOD的度数是解题的关键5、A【解析】在ABC中,C=90,AB=3,BC=1,sinA=.故选A.6、A【分析】先根据圆的周长公式求得底面圆周长,再根据弧长公式即可求得结果【详解】解:由题意得底面圆周长=30=30cm,解得:n=108故选A【点睛】本题考查圆的周长公式,弧长公式,方程思想是初中数学学习中非常重要的思想方法,是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意7、D【分析】根据相似三角形的判定定理判断即可【详解】解:由AED=B,A=A,则可判断ADEACB;DEBC,则有AED=C,ADE=B,则可判断ADEACB;,A=A,则可判断ADEACB;ADBCDEAC,可化为,此时不确定ADE=ACB,故不能确定ADEACB;由ADE=C,A=A,则可判断ADEACB;所以能满足ADEACB的条件是:,共4个,故选:D【点睛】此题考查了相似三角形的判定,关键是掌握相似三角形的三种判定定理8、B【分析】设二、三月份的平均增长率为x,则二月份的生产量为100(1+x),三月份的生产量为100(1+x)(1+x),根据二月份的生产量+三月份的生产量=1台,列出方程即可【详解】设二、三月份的平均增长率为x,则二月份的生产量为100(1+x),三月份的生产量为100(1+x)(1+x),根据题意,得100(1+x)+100(1+x)2=1故选B【点睛】本题考查了由实际问题抽象出一元二次方程的知识,设出未知数,正确找出等量关系是解决问题的关键9、D【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可【详解】解:打开电视机,正在播放篮球比赛是随机事件,不符合题意;守株待兔是随机事件,不符合题意;明天是晴天是随机事件,不符合题意在只装有5个红球的袋中摸出1球,是红球是必然事件,D符合题意.故选:D【点睛】本题考查的是必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件10、A【分析】先将点A代入抛物线的解析式中整理出一个关于a,b的等式,然后利用平方的非负性求出a,b的值,进而可求点A的坐标,然后求出抛物线的对称轴即可得出答案【详解】点在抛物线上,整理得 , ,解得 , , 抛物线的对称轴为 ,点关于抛物线对称轴的对称点坐标为故选:A【点睛】本题主要考查完全平方公式的应用、平方的非负性和二次函数的性质,掌握二次函数的性质是解题的关键二、填空题(每小题3分,共24分)11、60或 120【分析】如下图所示,分两种情况考虑:D点在优弧CDB上或E点在劣弧BC上时,根据三角函数可求出OCF的大小,进而求出BOC的大小,再由圆周角定理可求出D、E大小,进而得到弦BC所对的圆周角【详解】解:分两种情况考虑:D在优弧CDB上或E在劣弧BC上时,可得弦BC所对的圆周角为D或E,如下图所示,作OFBC,由垂径定理可知,F为BC的中点,CF=BF=BC=,又直径为4cm,OC=2cm,在RtAOC中,cosOCF=,OCF=30,OC=OB,OCF=OBF=30,COB=120,D=COB=60,又圆内接四边形的对角互补,E=120,则弦BC所对的圆周角为60或120故答案为:60或120【点睛】此题考查了圆周角定理,圆内接四边形的性质,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握圆周角定理是解本题的关键12、(5,2)【分析】由BAC=90,可得ABOCAD,利用全等三角形的性质即可求出点C坐标【详解】解:BAC=90BAO+ABO=BAO+CADABO=CAD,又轴,CDA=90在ABO与CAD中,ABO=CAD,AOB=CDA,AB=CA,ABOCAD(AAS)OB=AD,设OA=a()B(0,3)AD=3,点C(a+3,a),点C在反比例函数图象上,解得:或(舍去)点C(5,2),故答案为
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号