资源预览内容
第1页 / 共13页
第2页 / 共13页
第3页 / 共13页
第4页 / 共13页
第5页 / 共13页
第6页 / 共13页
第7页 / 共13页
第8页 / 共13页
第9页 / 共13页
第10页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
X光机的原理及构造茁隔K泄机原理圈诺鼎X光机原理图X射线的发现1895年德国物理学家伦琴(W. C. RÖntgen)在研究阴极射线管中气体放电现象 时,用一只嵌有两个金属电极(一个叫做阳极,一个叫做阴极)的密封玻璃管,在电极两端加 上几万伏的高压电,用抽气机从玻璃管内抽出空气。为了遮住高压放电时的光线一种弧光) 外泄,在玻璃管外面套上一层黑色纸板。他在暗室中进行这项实验时,偶然发现距离玻璃管 两米远的地方,一块用铂氰化钡溶液浸洗过的纸板发出明亮的荧光。再进一步试验,用纸板、 木板、衣服及厚约两千页的书,都遮挡不住这种荧光。更令人惊奇的是,当用手去拿这块发 荧光的纸板时,竟在纸板上看到了手骨的影像。当时伦琴认定:这是一种人眼看不见、但能穿透物体的射线。因无法解释它的原理,不 明它的性质,故借用了数学中代表未知数的“X”作为代号,称为“X”射线(或称X射线或 简称X线)。这就是X射线的发现与名称的由来。此名一直延用至今。后人为纪念伦琴的这 一伟大发现,又把它命名为伦琴射线X射线的发现在人类历史上具有极其重要的意义,它为自然科学和医学开辟了一条崭新 的道路,为此1901年伦琴荣获物理学第一个诺贝尔奖金。科学总是在不断发展的,经伦琴及各国科学家的反复实践和研究,逐渐揭示了 X射线 的本质,证实它是一种波长极短,能量很大的电磁波。它的波长比可见光的波长更短(约在 0. 001100nm,医学上应用的X射线波长约在0. 001。0.1 nm之间),它的光子能量 比可见光的光子能量大几万至几十万倍。因此,X射线除具有可见光的一般性质外,还具有 自身的特性。X射线的性质(一)物理效应1穿透作用穿透作用是指X射线通过物质时不被吸收的能力。X射线能穿透一般可 见光所不能透过的物质。可见光因其波长较长,光子其有的能量很小,当射到物体上时,一 部分被反射,大部分为物质所吸收,不能透过物体;而X射线则不然,因其波长短,能量 大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿 透能力。X射线穿透物质的能力与X射线光子的能量有关,X射线的波长越短,光子的能量 越大,穿透力越强。X射线的穿透力也与物质密度有关,密度大的物质,对X射线的吸收 多,透过少;密度小者,吸收少,透过多。利用差别吸收这种性质可以把密度不同的骨骼、 肌肉、脂肪等软组织区分开来。这正是X射线透视和摄影的物理基础。2. 电离作用物质受X射线照射时,使核外电子脱离原子轨道,这种作用叫电离作用。 在光电效应和散射过程中,出现光电子和反冲电子脱离其原子的过程叫一次电离,这些光电 子或反冲电子在行进中又和其它原子碰撞,使被击原子逸出电子叫二次电离。在固体和液体 中。电离后的正、负离子将很快复合,不易收集。但在气体中的忘离电荷却很容易收集起来, 利用电离电荷的多少可测定X射线的照射量:X射线测量仪器正是根据这个原理制成的。 由于电离作用,使气体能够导电;某些物质可以发生化学反应;在有机体内可以诱发各种生 物效应。电离作用是X射线损伤和治疗的基础。3. 荧光作用由于X射线波长很短,因此是不可见的。但它照射到某些化合物如磷、 铂氰化钡、硫化锌镉、钨酸钙等时,由于电离或激发使原子处于激发状态,原子回到基态过 程中,由于价电子的能级跃迁而辐射出可见光或紫外线,这就是荧光。X射线使物质发生荧 光的作用叫荧光作用。荧光强弱与X射线量成正比。这种作用是X射线应用于透视的基础。 在X射线诊断工作中利用这种荧光作用可制成荧光屏,增感屏,影像增强器中的输入屏等。 荧光屏用作透视时观察X射线通过人体组织的影像,增感屏用作摄影时增强胶片的感光量。4. 热作用物质所吸收的X射线能,大部分被转变成热能,使物体温度升高,这就是热 作用。5干涉、衍射、反射、折射作用这些作用与可见光一样。在X射线显微镜、波长测定 和物质结构分析中都得到应用。(二)化学效应1感光作用同可见光一样,X射线能使胶片感光。当X射线照射到胶片上的溴化银 时,能使银粒子.沉淀而使胶片产生“感光作用”。胶片感光的强弱与X射线量成正比。 当X射线通过人体时,因人体各组织的密度不同,对X射线量的吸收不同,致绽胶片上所 获得的感光度不同,从而获得X射线的影像。这就是应用X射线作摄片检查的基础。2.着色作用某些物质如铂氰化钡、铅玻璃、水晶等,经X射线长期照射后,其结晶 体脱水而改变颜色,这就叫做着色作用。(三)生物效应当X射线照射到生物机体时,生物细胞受到抑制、破坏甚至坏死,致使机体发生不同 程度的生理、病理和生化等方面的改变,称为X射线的生物效应。不同的生物细胞,对X 射线有不同的敏感度。枫X射线可以治疗人体的某些疾病,如肿瘤等。另一方面,它对正 常机体也有伤害,因此要做好对人体的防护。X射线的生物效应归根结底是由X射线的电 离作用造成的。由于X射线具有如上种种效应!因而在工业、农业、科学研究等领域,获得 了广泛的应用,如工业探伤,晶体分析等。在医学上,X射线技术已成为对疾病进行诊断 和治疗的专门学科,在医疗卫生事业中占有重要地位。MSIh ”X射线在医学中的应用(一)X射线诊断X射线应用于医学诊断,主要依据X射线的穿透作用、差别吸收、感光作用和荧光作 用。由于X射线穿过人体时,受到不同程度的吸收,如骨骼吸收的X射线量比肌肉吸收的 量要多,那么通过人体后的X射线量就不一样,这样便携带了人体各部密度分布的信息, 在荧光屏上或摄影胶片上引起的荧光作用或感光作用的强弱就有较大差别,因而在荧光屏上 或摄影胶片上(经过显影、定影)将显示出不同密度的阴影。根据阴影浓淡的对比,结合临床 表现、化验结果和病理诊断,即可判断人体某一部分是否正常。于是,X射线诊断技术便成 了世界上最早应用的非刨伤性的内脏检查技术。(二)X射线治疗X射线应用于治疗,主要依据其生物效应,应用不同能量的X射线对人体病灶部分的 细胞组织进行照射时,即可使被照射的细胞组织受到破坏或抑制,从而达到对某些疾病,特 别是肿瘤的治疗目的。(三)X射线防护在利用X射线的同时,人们发现了导致病人脱发、皮肤烧伤、工作人员视力障碍,白 血病等射线伤害的问题,为防止X射线对人体的伤害,必须采取相应的防护措施。以上构 成了X射线应用于医学方面的三大环节一一诊断、治疗和防护。医用X射线设备的发展简史自1895年以来,X射线诊断与治疗技术有了飞速的发展,主要进展可分为以下几个阶 段:(一)离子X射线管阶段(18951912)这是X射线设备的早期阶段。当时X射线机的结构非常简单,使用效率很低的含气式 冷阴极离子X射线管,运用笨重的感应线圈发生高压,裸露式的高压机件,更没有精确的 控制装置。X射线机装置容量小、效率低、穿透力弱、影像清晰度不高、缺乏防护0据资料 记载,当时拍摄一张X射线骨盆像,需长达4060min的曝光时间,结果照片拍成之后, 受检者的皮肤却被X射线烧伤。(二)电子X射线管阶段(19131928)随着电磁学、高真空技术及其他学科的发展,1910年美国物理学家W. D. Coolidge 发表了钨灯丝X射线管制造成功的报告。1913年开始实际使用,它的最大特点是*钨灯丝加 热到白炽状态以提供管电流所需的电子,所以调节灯丝的加热温度就可以控制管电流,从而 使管电压和管电流可以分别独立调节,而这正是提高影像质量所需要的。1913年滤线栅的发明,部分地消除了散射线,提高了影像的质量。1914年制成了钨酸 镉荧光屏,开始了 X射线透视的应用。1923年发明了双焦点X射线管,解决了 X射线摄影 的需要。X射线管的功率可达几千瓦,矩形焦点的边长仅为几毫米,X射线影像质量大大提 高。同时,造影剂的逐渐应用,使X射线的诊断范围也不断扩大。它不再是一件单纯拍摄 骨骼影像的简单工具,却已成为对人体组织器官中那些自然对比差(对X射线吸收差小)的胃 肠道、支气管、血管、脑室、肾、膀胱等也能检查的重要的医学诊断设施了。与此同时,X 射线在治疗方面也开始得到应用。X光的产生方式三种方式可产生X光:轫致辐射(Bremsstrahlung)、电子俘获、内转换,x光机产生 X光的机理属于轫致辐射。电子俘获:B衰变包括3种方式:B-衰变、B+衰变和电子俘获(EC).其中电子俘获(EC)这种衰变 可以表示为即母核俘获1个核外轨道电子使核内1个质子转变为中子,并放出1个中微子,所 以子核的电荷数变为Z-1,而质量数保持不变在一般情况下,K层上的电子被原子核俘获的 居多,因为K层最靠近原子核,被俘获的概率最大,但是L层上的电子被俘获的概率也是 存在的原子核在俘获了电子之后,子核原子的K层或L层上将出现一个电子空位,当某一 外层电子来填补这个空位时,可能会出现下面两种情况之一:要么以标识X射线的形式将 多余的能量释放,要么将多余的能量交给另一层上的其他电子,此电子获得能量而脱离原子, 成为俄歇电子伴有X射线或俄歇电子的发射是K俘获过程的标志.内转换:原子核可以通过某种方式(譬如B衰变)达到激发态,处于激发态的原子核可以通过发 射Y射线跃迁到低激发态或基态,这种现象称为Y衰变或称Y跃迁核能级跃迁所发出的 光子与原子能级跃迁所发出的光子没本质的差别,不同的是原子能级跃迁发射的光子能量只 有eVkeV数量级,而核能级跃迁发射的光子能量却有MeV数量级.在不考虑核的反冲时, 光子能量Eg可以表示为下面的形式Eg=Es-Ex.有时原子核从激发态到较低能态的跃迁并不 放出光子,而是把能量直接交给核外电子,使电子脱离原子,这种现象称为内转换IC),脱 离原子的电子称为内转换电子处于激发态的原子核可以通过放射Y光子回到基态,也可以 通过产生内转换电子回到基态,究竟发生的是哪种过程,完全决定于核的能级特性内转换 电子的动能与壳层电子的电离能之和应是原子核的两能级间的能量差也就是等于在两原子 核能级间跃迁所辐射出的Y光子的能量对于内转换的研究是获得有关核能级知识的重要手 段当然通过内转换方式还可以产生原子的特征X射线.x光机基本原理X-ray是由德国仑琴教授在1895年所发现。这种由真空管发出能穿透物体的辐射线,在电磁光谱上能量较可见光强,波长较短,频率较高,相类似之辐射线有宇宙射线,X-ray等。产生X-Ray必须要有X光球管,而X光球管基本构造必须拥有:阴极灯丝(Cathod)阳极靶(Anode)真空玻璃管 (Evacuated glass envelope)当然还要有电源能量供应X射线特性能穿透物体为不可见光於电磁波光谱内波长范围广直线散射光速进行能使萤光 物质发光能使底片感光会造成散射线当X-ray进入物体时,会有三种情形发生:被物体吸收(Absorpti on)产生散射现(Scatter)穿透(Pen etrati on)影响图像效果之四要素:Density (黑化度)-mAsContrast (对比度)-kVpSharpness (清晰度)-motion,几何参数Distortion (失真度)-位置,角度X射线波长与影片上对比度之关系在X-ray穿透过病人,其穿透率主要和病人组织结构及X射线波长有关。短波长 X-ray (high kV)能量较高,穿透性好,造成在影片上较低之对比度(low contrast)。长波长 X-ray (low kV)能量较低,较易被人体所吸收,穿透性较差,而在影片上对比度较高High contrast)。应用X光机广泛应用于医疗卫生,科学教育,工业各个领域,例如X光机可用于医院协助医 生诊断疾病,用于工业的无损探伤,火车站和机场的安全检查等等。日I-UJ便携式X光机2大型X光机作用编辑高频逆变技术
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号