资源预览内容
第1页 / 共6页
第2页 / 共6页
第3页 / 共6页
第4页 / 共6页
第5页 / 共6页
第6页 / 共6页
亲,该文档总共6页全部预览完了,如果喜欢就下载吧!
资源描述
第一单元 四则运算:加法、减法、乘法和除法统称四则运算。1、加减法的意义和各部分间的关系。(1)把两个数合并成一个数的运算,叫做加法。加法各部分间的关系:和=加数+加数 加数=和另一个数(2)已知两个数的和与其中一个加数,求另一个数的运 算,叫做减法。减法各部分间的关系:差=被减数减数 减数=被减数-差 被减数=差+减数(3)加法和减法是互逆运算。2、乘除法的意义和各部分间的关系。(1)求几个相同加数的和的简便运算,叫做乘法。乘法各部分间的关系:积=因数因数 因数=积另一个因数(2)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。除法各部分间的关系:商=被除数除数 除数=被除数商 被除数=商除数(3)乘法和除法是互逆运算。3、关于“0”的运算(1)“0”不能做除数;字母表示:a0错误(2)一个数加上0还得原数;字母表示:a0=a(3)一个数减去0还得原数; 字母表示:a0=a(4)被减数等于减数,差是0;字母表示:aa=0(5)一个数和0相乘,仍得0;字母表示:a0=0(6)0除以任何非0的数,还得0;字母表示:0a(a0)=0(7)00得不到固定的商;50得不到商(0不能做除数).()被减数等于减数,差是0。aa=0被除数等于除数,商是aa=(a不为0)、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。、一个算式里既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的,最后算括号外面的有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。第二单元观察物体、从不同的位置观察同一物体,看到的形状一般是不一样的。、从同一位置观察不同的物体,看到的图形可能是相同的。3、路程时间=速度,路程速度=时间,速度时间=路程。4、总价单价=数量,总价数量=单价,单价数量=总价。第三单元运算定律及简便运算:一、加法运算定律:1、加法交换律:两个数相加,交换加数的位置,和不变。ab=ba2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(ab)c=a(bc)加法的这两个定律往往结合起来一起使用。如:()依据是什么?3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和叫做减法的性质。用字母表示:a-b-c=a-(b+c)。二、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变。ab=ba2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(ab) c = a (bc )乘法的这两个定律往往结合起来一起使用。如:的简算3、乘法分配律:()两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加叫做乘法分配律。用字母表示:(ab)c=acbc(ab)cacbc(2)两个数的差与一个数相乘,可以先把它们与这个数分别相乘,再把所得的积相减。用字母表示:(a-b)c=ac-bc。(3)两个数的和除以一个数,可以先把它们与这个数分别相除,再把所得的商相加。用字母表示:(a+b)c=ac+bc。(4)两个数的差除以一个数,可以先把它们与这个数分别相除,再把所得的商相减。用字母表示:(ab)c=acbc。、乘法分配律的应用:类型一:(ab)c= acbc (ab)c= acbc类型二:acbc=(ab)cacbc=(ab)c类型三:a99a = a(991)aba= a(b1)类型四:a99 a102= a(1001)= a(1002)= a100a1 = a100a2、一个数连续除以两个数,可以用这个数除以这两个数的积,叫做除法的性质。用字母表示:abc=a(bc)。、被除数和除数同时扩大(乘)或者缩小(除以)相同的倍数(0除外),商不变,叫做商不变性质。用字母表示:ab=(ac)(bc),ab=(ac)(bc)。三、简便计算1连加的简便计算:使用加法结合律(把和是整十、整百、整千的结合在一起)个位:1与9,2与8,3与7,4与6,5与5,结合。十位:0与9,1与8,2与7,3与6,4与5,结合。2连减的简便计算:连续减去几个数就等于减去这几个数的和。如:106-26-74=106-(2674)减去几个数的和就等于连续减去这几个数。如16-(2674)=16-26-743加减混合的简便计算:第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减)例如:12338-23=123-2338 146-7854=14654-784连乘的简便计算:看见25就去找4,看见125就去找8;使用乘法结合律:把常见的数结合在一起 25与4;125与8;125与80等5连除的简便计算:连续除以几个数就等于除以这几个数的积。除以几个数的积就等于连续除以这几个数。6.乘、除混合的简便计算:第一个数的位置不变,其余的因数、除数可以交换位置。(可以先乘,也可以先除)例如:27139=27913四、连除的性质:一个数连续除以两个数,等于除以这两个数的积。abc= a(bc)1、常见乘法计算:254100125810002、加法交换律简算例子:3、加法结合律简算例子:509850488406050 50 98488(40 60)100 98488 1001985884、乘法交换律简算例子:5、乘法结合律简算例子:255649912582545699(1258)100569910005600990006、含有加法交换律与结合律的简便计算:7、含有乘法交换律与结合律的简便计算:652835722512548(6535)(28 72)(254)(1258)100 1001001000200、乘法分配律简算例子:(1)、分解式(2)、合并式(3)、特殊125(40 4)135121352992562562540 254135(122)9925625611000 10013510256(991)1100135025610025600(4)、特殊2(5)、特殊3(6)、特殊445102992635835643545(1002)(1001)2635(864)45100452100261263510=4500 90260026350=45902574、连续减法简便运算例子:528653552889128528(150128)=528(6535)=52812889=528128150=528100=40089=400150=428=311=25010、连续除法简便运算例子:3200254=3200(254)=3200100=3211、其它简便运算例子:256584425084=2564458=25048=30058=1000812、有关简算的拓展:10238382 1252532 12588 3.251.9810.321.98379637337 0.60.4-0.60.4 389999第四单元小数的意义和性质:1小数的产生:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。2、分母是10、100、1000的分数可以用小数来表示。3、小数是十进制分数的另一种表现形式。4、小数的计数单位是十分之一、百分之一、千分之一分别写作0.1、0.01、0.0015、每相邻两个计数单位间的进率是10。6、小数的数位是十分位、百分位、千分位最高位是十分位。整数部分的最低位是个位。个位和十分位的进率是10。7、小数的读法:先读整数部分(按照原来的读法),再读小数点,再读小数部分。读小数部89、小数的写法:先写整数部分(按照原来的写法),再写小数点,最后写小数部分:写小数部分,小数部分要依次写出每个数字,而且有几个0就写几个0。9、小数的数位顺序表整数部分小数点小数部分数位万位千位百位十位个位十分位百分位千分位
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号