资源预览内容
第1页 / 共7页
第2页 / 共7页
第3页 / 共7页
第4页 / 共7页
第5页 / 共7页
第6页 / 共7页
第7页 / 共7页
亲,该文档总共7页全部预览完了,如果喜欢就下载吧!
资源描述
数 列 专 题u 考点一:求数列的通项公式1. 由an与Sn的关系求通项公式由Sn与an的递推关系求an的常用思路有:利用SnSn1an(n2)转化为an的递推关系,再求其通项公式;数列的通项an与前n项和Sn的关系是an当n1时,a1若适合SnSn1,则n1的情况可并入n2时的通项an;当n1时,a1若不适合SnSn1,则用分段函数的形式表示转化为Sn的递推关系,先求出Sn与n的关系,再求an.2.由递推关系式求数列的通项公式由递推公式求通项公式的常用方法:已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解u 累加法:递推关系形如an1anf(n),常用累加法求通项;u 累乘法:递推关系形如f(n),常用累乘法求通项;u 构造法:1)递推关系形如“an1panq(p、q是常数,且p1,q0)”的数列求通项,此类通项问题,常用待定系数法可设an1p(an),经过比较,求得,则数列an是一个等比数列;2)递推关系形如“an1panqn(q,p为常数,且p1,q0)”的数列求通项,此类型可以将关系式两边同除以qn转化为类型(4),或同除以pn1转为用迭加法求解3)u 倒数变形3.数列函数性质的应用数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性函数思想在数列中的应用(1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决(2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:作差;作商;结合函数图象等方法(3)数列an的最大(小)项的求法可以利用不等式组找到数列的最大项;利用不等式组找到数列的最小项. 例3已知数列an(1)若ann25n4,数列中有多少项是负数?n为何值时,an有最小值?并求出最小值(2)若ann2kn4且对于nN*,都有an1an成立求实数k的取值范围u 考点二:等差数列和等比数列等差数列等比数列定义anan1常数(n2)常数(n2)通项公式ana1(n1)dana1qn1(q0)判定方法(1)定义法(2)中项公式法:2an1anan2(n1)an为等差数列(3)通项公式法:anpnq(p、q为常数)an为等差数列(4)前n项和公式法:SnAn2Bn(A、B为常数)an为等差数列(5)an为等比数列,an0logaan为等差数列(1)定义法(2)中项公式法:aanan2(n1)(an0)an为等比数列(3)通项公式法:ancqn(c、q均是不为0的常数,nN*)an为等比数列(4)an为等差数列aan为等比数列(a0且a1)性质(1)若m、n、p、qN*,且mnpq,则amanapaq特别:若mn2p,则aman2ap.(2)anam(nm)d(3) 数列Sm,S2mSm,S3mS2m,也是等差数列,即2(S2mSm)Sm+(S3mS2m)(1)若m、n、p、qN*,且mnpq,则amanapaq特别地,若mn2p,则amana.(2)anamqnm(3) 若等比数列前n项和为Sn则Sm,S2mSm,S3mS2m仍成等比数列,即(S2mSm)2Sm(S3mS2m)(mN*,公比q1)前n项和Snna1d(1)q1,Sn(2)q1,Snna11.在等差(比)数列中,a1,d(q),n,an,Sn五个量中知道其中任意三个,就可以求出其他两个解这类问题时,一般是转化为首项a1和公差d(公比q)这两个基本量的有关运算2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用但在应用性质时要注意性质的前提条件,有时需要进行适当变形3.用函数的观点理解等差数列、等比数列(1)对于等差数列ana1(n1)ddn(a1d),当d0时,an是关于n的一次函数,对应的点(n,an)是位于直线上的若干个离散的点;当d0时,函数是单调增函数,对应的数列是单调递增数列,Sn有最小值;当d0时,函数是常数函数,对应的数列是常数列,Sn=na1;当d0时,函数是减函数,对应的数列是单调递减数列,Sn有最大值若等差数列的前n项和为Sn,则Snpn2qn(p,qR)当p0时,an为常数列;当p0时,可用二次函数的方法解决等差数列问题(2)对于等比数列ana1qn1,可用指数函数的性质来理解当a10,q1或a10,0q1时,等比数列an是单调递增数列;当a10,0q1或a10,q1时,等比数列an是单调递减数列;当q1时,是一个常数列;当q0时,无法判断数列的单调性,它是一个摆动数列4.常用结论(1)若an,bn均是等差数列,Sn是an的前n项和,则mankbn,仍为等差数列,其中m,k为常数(2)若an,bn均是等比数列,则can(c0),|an|,anbn,manbn(m为常数),a,等也是等比数列(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a2a1,a3a2,a4a3,成等比数列,且公比为q.(4)等比数列(q1)中连续k项的和成等比数列,即Sk,S2kSk,S3kS2k,成等比数列,其公比为qk.等差数列中连续k项的和成等差数列,即Sk,S2kSk,S3kS2k,成等差数列,公差为k2d.5)5.易错提醒(1)应用关系式an时,一定要注意分n1,n2两种情况,在求出结果后,看看这两种情况能否整合在一起(2)三个数a,b,c成等差数列的充要条件是b,但三个数a,b,c成等比数列的必要条件是b2ac.6.等差数列的判定方法(1)定义法:对于n2的任意自然数,验证anan1为同一常数;(2)等差中项法:验证2an1anan2(n3,nN*)成立;(3)通项公式法:验证anpnq;(4)前n项和公式法:验证SnAn2Bn.注意:在解答题中常应用定义法和等差中项法,而通项公式法和前n项和公式法主要适用于选择题、填空题中的简单判断7.等比数列的判定方法(1)定义法:若q(q为非零常数,nN*)或q(q为非零常数且n2,nN*),则an是等比数列(2)等比中项公式法:若数列an中,an0且aanan2(nN*),则数列an是等比数列(3)通项公式法:若数列通项公式可写成ancqn(c,q均是不为0的常数,nN*),则an是等比数列(4)前n项和公式法:若数列an的前n项和Snkqnk(k为常数且k0,q0,1),则an是等比数列注意:前两种方法常用于解答题中,而后两种方法常用于选择、填空题中的判定.u 考点三:数列求和中应用转化与化归思想的常见类型:1.公式法直接利用等差数列、等比数列的前n项和公式求和(1)等差数列的前n项和公式:Snna1d;(2)等比数列的前n项和公式:Sn2.倒序相加法如果一个数列an的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和即是用此法推导的3.错位相减法这是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列anbn的前n项和,其中an,bn分别是等差数列和等比数列求a1b1a2b2anbn的和就适用此法做法是先将和的形式写出,再给式子两边同乘或同除以公比q,然后将两式相减,相减后以“qn”为同类项进行合并得到一个可求和的数列(注意合并后有两项不能构成等比数列中的项,不要遗漏掉)4.裂项相消法(注重积累!)利用通项变形,将通项分裂成两项或n项的差,通过相加过程中的相互抵消,最后只剩下有限项的和这种方法,适用于求通项为的数列的前n项和,其中an若为等差数列,则.利用裂项相消法求和时应注意哪些问题?(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项常见的拆项公式(1); (2) ;(3) ; (4) ; (5)().5.分组求和法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减6.并项求和法一个数列的前n项和,可两两结合求解,则称之为并项求和形如an(1)nf(n)类型,可采用两项合并求解例如,Sn10029929829722212(10099)(9897)(21)5 050.7.放缩法是证明数列型不等式的压轴题的最重要的方法,放缩法的注意问题以及解题策略(1)明确放缩的方向:即是放大还是缩小,看证明的结论,是小于某项,则放大,是大于某个项,则缩小。(2)放缩的项数:有时从第一项开始,有时从第三项,有时第三项,等等,即不一定是对全部项进行放缩。(3)放缩法的常见技巧及常见的放缩式:(1)根式的放缩:;(2)在分式中放大或缩小分子或分母:;真分数分子分母同时减一个正数,则变大;,;假分数分子分母同时减一个正数,则变小,如;(3)应用基本不等式放缩:;
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号