资源预览内容
第1页 / 共14页
第2页 / 共14页
第3页 / 共14页
第4页 / 共14页
第5页 / 共14页
第6页 / 共14页
第7页 / 共14页
第8页 / 共14页
第9页 / 共14页
第10页 / 共14页
亲,该文档总共14页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
集合 一、知识点: 1、元素:(1) 集合中的对象称为元素,若是集合A的元素,记作;若b不是集合A的元素,记作;(2) 集合中对象元素的性质:确定性、互异性、无序性;(3) 集合表示方法:列举法、描述法、图示法;(4) 常用数集:2、集合的关系: 子集 相等3、全集 交集 并集 补集4、 集合的性质: (1) (2) (3) (4) (5) 二、典型例题例1. 已知集合,若,求a。 例2. 已知集合M中只含有一个元素,求a的值。 例3. 已知集合且BA,求a的值。 例4. 已知方程有两个不相等的实根x1, x2. 设Cx1, x2, A1,3,5,7,9, B1,4,7,10,若,试求b, c的值。 例5. 设集合,(1)若, 求m的范围;(2)若, 求m的范围。 例6. 已知A0,1, Bx|xA,用列举法表示集合B,并指出集合A与B的关系。三、练习题1. 设集合M则( )A. B. C. a M D. a M2. 有下列命题:是空集 若,则 集合有两个元素 集合为无限集,其中正确命题的个数是( ) A. 0B. 1C. 2 D. 33. 下列集合中,表示同一集合的是( )A. M(3,2) , N(2,3)B. M3,2 , N(2,3)C. M(x,y)|xy1, Ny|xy1D.M1,2, N2,14. 设集合,若, 则a的取值集合是( ) A. B. 3C. D. 3,25. 设集合A x| 1 x 2, B x| x a, 且, 则实数a的范围是( ) A. B. C. D. 6. 设x,yR,A(x,y)|yx, B, 则集合A,B的关系是( ) A. ABB. BA C. AB D. AB7. 已知Mx|yx21 , Ny|yx21, 那么MN( ) A. B. M C. N D. R8. 已知A 2,1,0,1, B x|x|y|,yA, 则集合B_9. 若,则a的值为_10. 若1,2,3A1,2,3,4,5, 则A_11. 已知M2,a,b, N2a,2,b2,且MN表示相同的集合,求a,b的值12. 已知集合求实数p的范围。13. 已知,且A,B满足下列三个条件: ,求实数a的值。四、练习题答案1. B2. A3. D4. C5. A6. B7. C 8. 0,1,29. 2,或310. 1,2,3或1,2,3,4或1,2,3,5或1,2,3,4,511. 解:依题意,得:或,解得:,或,或 结合集合元素的互异性,得或。12. 解:Bx|x2 若A ,即 ,满足AB,此时 若,要使AB,须使大根或小根(舍),解得:所以 13. 解:由已知条件求得B2,3,由,知AB。而由 知,所以AB。 又因为,故A,从而A2或3。 当A2时,将x2代入,得经检验,当a 3时,A2, 5; 当a5时,A2,3。都与A2矛盾。当A 3时,将x3代入,得经检验,当a 2时,A3, 5; 当a5时,A2,3。都与A2矛盾。 综上所述,不存在实数a使集合A, B满足已知条件。函数定义域求法的总结和配套习题(1)分式中的分母不为零;(2)偶次方根下的数(或式)大于或等于零;(3)对数函数真数大于零;(4)幂零函数底数不为零抽象的一、已知的定义域,求的定义域例1 已知函数的定义域为,求的定义域分析:该函数是由和构成的复合函数,其中是自变量,是中间变量,由于与是同一个函数,因此这里是已知,即,求的取值范围解:的定义域为,故函数的定义域为二、已知的定义域,求的定义域例2已知函数的定义域为,求函数的定义域分析:令,则,由于与是同一函数,因此的取值范围即为的定义域解:由,得令,则,故的定义域为三、运算型的抽象函数例若的定义域为,求的定义域解:由的定义域为,则必有解得所以函数的定义域为3、逆向型例5已知函数的定义域为求实数的取值范围。分析:函数的定义域为,表明,使一切都成立,由项的系数是,所以应分或进行讨论。解:当时,函数的定义域为;当时,是二次不等式,其对一切实数都成立的充要条件是 综上可知。评注:不少学生容易忽略的情况,希望通过此例解决问题。例6已知函数的定义域是,求实数的取值范围。解:要使函数有意义,则必须恒成立,因为的定义域为,即无实数解当时,恒成立,解得;当时,方程左边恒成立。综上的取值范围是。1.若函数的定义域为,则的定义域为 。 2.已知函数的定义域为,求函数的定义域3. 已知函数的定义域为,则的定义域为_。4. 函数定义域是,则的定义域是( )A. B. C. D. 5.已知函数的定义域是,求的定义域。6. 若函数f(x+1)的定义域为,2,求f(x2)的定义域求函数的值域方法总结1、值域:函数,我们把函数值的集合称为函数的值域。2、最值:求函数最值常用方法和函数值域的方法基本相同。事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此,求函数的最值和值域,其实质是相同的,只是提问不同而已。1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。 如:1. 求函数的值域。2. 求函数的值域。2. 配方法配方法是求二次函数值域最基本的方法之一。 例1:求函数的值域。 例2: 的值域;3. 函数单调性法例:. 求函数的值域。解:令则在2,10上都是增函数所以在2,10上是增函数当x=2时,当x=10时,故所求函数的值域为:练习: 求函数的值域。4. 判别式法 形如; 例子:求函数的值域。解:原函数化为关于x的一元二次方程(1)当时,解得:(2)当y=1时,而故函数的值域为练习: 求函数的值域;5、分离常数法形如的函数也可用此法求值域;例:求函数的值域;6. 换元法形如通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。形如 例子. 求函数的值域。解:令,则又,由二次函数的性质可知当时,当时,故函数的值域为例3. 求函数的值域7、数形结合法例:求函数课后作业1函数的值域是 ;函数的值域是 。2函数y=-x(x+2)(x0)的反函数的定义域是 。3若函数的值域为R,则k的取值范围是( )A 0k1 B 0k1),求b的值。7已知函数f(x)=1-2ax-a2x(a1)。(1)求f(x)的值域。 (2)若x-2,1时,函数的最小值为-7,求a及f(x)的最大值。 指数与对数函数题型总结 题型1 指数幂、指数、对数的相关计算 【例1】计算:32103lg3. 【例2】计算下列各式的值: (1)lglg lg; (2)lg 25lg 8lg 5lg 20(lg 2)2. 变式: 1.计算下列各式的值: (1)(lg 5)22lg 2(lg 2)2; (2).2.计算下列各式的值:(1); (2)lg 5(lg 8lg 1 000)(lg 2 )2lg lg 0.06.题型2指数与对数函数的概念【例1】若函数y(43a)x是指数函数,则实数a的取值范围为_【例2】指数函数y(2a)x在定义域内是减函数,则a的取值范围是_【例3】函数yax51(a0)的图象必经过点_变式:1.指出下列函数哪些是对数函数?(1)y3log2x;(2)ylog6x;(3)ylogx3;(4)ylog2x1.题型3 指数与对数函数的图象【例1】如图是指数函数yax,ybx,ycx,ydx的图象,则a,b,c,d与1的大小关系是( ) Aab1cd Bba1dc C1abcd Dab1dc【例2】函数y|2x2|的图象是()【例3】函数y2x1的图象是()【例4】直线y2a与函数y|ax1|(a0且a1)的图象有两个公共点,则a的取值范围是_【例5】方程|2x1|a有唯一实数解,则a的取值范围是_变式:1.如图所示,曲线是对数函数ylogax的图象,已知a取,则相应于c1,c2,c3,c4的a值依次为() A., B.,C., D.,2.函数yloga(x2)1的图象过定点()A(1,2) B(2,1) C(2,1) D(1,1)3.如图,若C1,C2分别为函数ylogax和ylogbx的图象,则()A0ab1B0ba1Cab1Dba14.函数f(x)ln x的图象与函数g(x)x24x4的图象的交点个数为()A0 B1 C
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号