资源预览内容
第1页 / 共20页
第2页 / 共20页
第3页 / 共20页
第4页 / 共20页
第5页 / 共20页
第6页 / 共20页
第7页 / 共20页
第8页 / 共20页
第9页 / 共20页
第10页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
学位论文我国粮食产量预测的时间序列模型研究论文作者姓名:Xxxx申请学位专业:信息与计算科学申请学位类别:理学学士指导教师姓名(职称):(副教授)论文提交日期:2011年06月5日我国粮食产量预测的时间序列模型研究摘要粮食是关系国民生计的重要战略物资,为做好粮食预测,本文介绍了时间序列的几种建模方法。通过分析1978-2009年我国粮食生产总量数据特点,建立了单积自回归移动平均模型ARIMA(p,d,q)。最终,利用Eviews6.0软件计算完成了我国粮食产量的预测。结果表明,在未来几年我国粮食产量在不受自然灾害影响的前提下,依然会进行缓慢增长。经分析,重大自然灾害对我国粮食产量影响严重,确保粮食产量要做好重大自然灾害预防。关键字:粮食产量;时间序列; ARIMA ;预测Research for Forecasting of Chinas Grain Yield Based on Time Series ModelAbstractGrain is an important livelihood strategy for the national relationship between material. Forecast for the grain, this thesis introduces several modeling methods of time serials Method and establishes autoregressive moving average model ARIMA (p, d, q) by analyzing characteristics of Chinas grain yield from 1978 to 2009. Finally, forecasting of Chinas grain yield is finished by means of Eviews6.0 and the result shows that Chinas grain yield will still grow slowly in the next few years if not being affected by natural disasters. Key words: grain yield; time serials; ARIMA; forecasting目 录 论文总页数:16页1引言11.1课题背景11.2国内外研究现状11.3本课题研究的意义21.4本课题的研究方法22几种时间序列预测分析法简介22.1自回归(AR)模型22.2移动平均(MA)模型32.3自回归移动平均(ARMA)模型32.4差分自回归滑动平均(ARIMA)模型42.4.1ARIMA模型原理42.4.2ARIMA模型预测的基本程序43数据分析及模型建立43.1数据分析43.2数据平稳化63.3模型的定阶83.4模型优化103.5模型检验113.6模型有效性检验113.7模型预测12结 论12参考文献12附 录13致 谢15声 明161 引言1.1 课题背景“国以民为本,民以食为天。”粮食是关系国计民生的重要战略物资,粮食安全与社会的和谐、政治的稳定、经济的持续发展息息相关。我国是发展中的农业大国,耕地仅占世界10,而人口却占世界的22,十几亿人的粮食问题始终是头等大事。加入WTO以后,我国的粮食安全问题受到了国内外的广泛关注。我国粮食产量受多种因素影响,没有规律可循。1.2 国内外研究现状我国学者对粮食产量的预测模型总体上来说大致可以分为三大类:时间序列模型、回归模型和人工神经网络模型。指数平滑模型、灰色预测模型及基于马尔可夫链的预测模型等都属于时间序列模型。回归模型中使用比较多的就是线性回归模型和双对数模型。人工神经网络模型是近几年才开始使用的基于生物学原理的预测系统。这些方法的优缺点分析如下:首先,指数平滑模型的原理和计算方法比较简单,对历史数据的数量没有太大的要求。迟灵芝(2004)曾运用单指数平滑方法首先对我国19911999年的粮食产量进行拟合,计算出平均相对误差为0.104%,效果还是比较理想的。但是模型中对平滑系数的确定直接关系到模型的精度问题,所以不同的平滑系数就可能造成结果的差异。林绍森等(2007)对三种预测模型的分析的结果证明了指数平滑法的预测误差最大。此外,由于模型本身在计算方法上的局限性,该方法只适用于近、短期预测。灰色预测模型也是比较常用的粮食产量预测模型。迟灵芝(2002)对灰色预测方法和回归模型进行比较分析,得出灰色预测的平均相对误差最小的结论。林绍森等(2007)对单指数平滑、自回归移动平均和灰色预测三种模型进行了比较,他指出灰色预测模型比自回归预测模型和单指数平滑预测模型更适合长期的预测。线性(或非线性)回归模型的一个优点是可对变量之间进行因果分析,描述其内在的联系。很多学者利用这一方法建立了粮食产量模型,找到了影响粮食产量的主要因素。如李子奈( 2000)的线性回归函数、石森昌等(2003)的双对数生产函数、李云松等(2002) 、肖海峰等(2004) 、程杰等(2007)的柯布道格拉斯生产函数等等。虽然他们选取的变量都不尽相同,但是都证明了回归模型对粮食产量的拟合效果很好。但是回归方法受到解释变量的约束,一般也只用在近、短期预测中。神经网络模型是一种建立在生物学神经元基础上的一个不需要建立解释变量与被解释变量之间具体关系的数学模型。它可以通过隐含层的学习和训练实现输入元素与输出元素之间的非线性映射。该模型的模拟效果可以在王启平(2002)、禹建丽等( 2004)的文章中看到。但是目前我国尚无比较完善和成熟的理论指导网络模型,在神经网络的程序设计中对隐含层单元数及目标参数的设置都只能凭经验或者是经过反复的训练和测试才能确定。总之,每个模型都有其优点和不足之处。对于数据比较少的短期预测问题,应用简单的指数进行平滑。对于结构复杂、影响因素众多的中长期问题一般用灰色预测模型。回归模型一般用来做因素分析,而且预测期较短。1.3 本课题研究的意义根据农业部发布的数据, 1998年我国粮食产量曾经达到历史最高水平,此后几年连续多年呈现下滑态势,持续稳产增产基本没有超过3年。自2004年开始,中国连续四年粮食增产, 2007年粮食产量突破了5亿吨。但是粮食生产是由诸多因素综合影响的不确定系统,未来我国粮食产量将如何变动,能否达到国家粮食安全的目标就成为一个很有意义的话题。有效地分析和预测我国粮食生产能力,对政策调整方向乃至保障粮食安全具有非常重要的价值。1.4 本课题的研究方法对于大多数时间数列是非平稳的,如果直接将非平稳时间序列当做平稳时间序列来进行回归分析,则可能造成“伪回归”,即变量间本来不存在相依关系,但回归结果却得出存在相依关系的错误结论。本文首先根据时间序列的散点图、自相关函数和偏自相关函数图识别其平稳性。然后对非平稳的时间序列数据进行平稳化处理,将其视为一个随机序列,分析此序列的特征并根据所识别出来的特征建立相应的时间序列模型。判断该模型残差序列是否为白噪声序列。通过检验后,利用此模型对粮食产量进行预测。2 几种时间序列预测分析法简介 2.1 自回归(AR)模型如果时间序列是它的前期值和随机项的线性函数,即可表示为 (1)则称该时间序列是自回归序列,(1)式为自回归模型,记为AR(p)。实参数称为自回归系数,是模型的待估参数。随机项是相互独立的白噪声序列,且服从均值为0、方差为的正态分布。随机项与滞后变量不相关。不是一般性,在(1)中假定序列均值为0。若,则令,可将写成(1)式的形式。记为k步滞后算子,即,则模型(1)可表示为 (2)令 模型可简写为: (3)AR(p)过程平稳的条件是滞后多项式的根均在单位圆外,即的根大于1。2.2 移动平均(MA)模型如果时间序列(是它的当前和前期的随机误差项的线性函数,即可表示为 (4)则称该时间序列是移动平均序列,(2)式为q阶移动平均模型,记为MA(q)模型。实参数为移动平均系数,是模型的待估系数。引入滞后算子,并令则模型(4)可简写为 (5)移动平均过程无条件平稳。但希望AR过程与MA过程能相互表出,即过程可逆。因此要求滞后多项式的根都在单位圆外,经推导可得 (6)其中,其他权重可递推得到。称(6)为MA(q)模型的逆转形式,它等价与无穷阶的AR过程。2.3 自回归移动平均(ARMA)模型如果时间序列是它的当期和前期的随机误差项以及前期值的线性函数,即可表示为: (7)则称该时间序列(是自回归平均序列,(7)式为(p,q)阶的自回归移动平均模型,记为ARMA(p,q)。为自回归系数,为移动平均系数,都是模型的待估参数。引入滞后算子B,模型(7)可简记为 (8)ARMA(p,q)过程的平稳条件是滞后多项式的根均在单位圆外。可逆条件是的根都在单位圆外。若,则称满足方程的平稳随机序列为p阶自回归模型,记为AR(p)模型。若,则称满足方程的平稳随机序列为q阶移动平均模型,记为MA(q)模型。显然,AR(p)模型和MA(q)模型都是ARMA(p,q)模型的特例。2.4 差分自回归滑动平均(ARIMA)模型2.4.1 ARIMA模型原理差分自回归滑动平均模型ARIMA(p,d,q)中,AR是自回归,p为自回归项数;MA为滑动平均,q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。ARIMA(p,d,q)模型是ARMA(p,q)模型的扩展。ARIMA(p,d,q)模型可以表示为: (9)其中L 是滞后算子(Lag operator)。2.4.2 ARIMA模型预测的基本程序 (一)根据时间序列的散点图、自相关函数和偏自相关函数图以ADF单位根检验其方差、趋势及其季节性变化规律,对序列的平稳性进行识别。一般来讲,经济运行的时间序列都不是平稳序列。 (二)对非平稳序列进行平稳化处理。如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理,如果数据存在异方差,则需对数据进行技术处理,直到处理后的数据的自相关函数值和偏相关函数值无显著地异于零。 (三)根据时间序列模型的识别规则,建立相应的模型。若平稳序列的偏相关函数是截尾的,而自相关函数是拖尾的,可断定序列适合AR模型;若平稳序列的偏相关函数是拖尾的,而自相关函数是截尾的,
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号