资源预览内容
第1页 / 共7页
第2页 / 共7页
第3页 / 共7页
第4页 / 共7页
第5页 / 共7页
第6页 / 共7页
第7页 / 共7页
亲,该文档总共7页全部预览完了,如果喜欢就下载吧!
资源描述
英文原文Drying TechnologyThere are three main types of gas-suspension dryers: Spray dryers, to convert a liquid solution or suspension to a dry, free-flowing powder Fluid-bed dryers, used to dry wet filter cake, or for pastes and sludges with dry product recirculation Flash dryers, for a relatively dry, crumbly, non-sticky feed The type of dryer chosen for any given application depends on both the feed properties and product requirements. Important feed properties are the moisture content, solids, viscosity, and density, as well as any volatile, flammable, or toxic components. Dried product specifications may include average particle size and particle size distribution, density, moisture content, and residual volatiles or solvents. Powder characteristics can be controlled and powder properties maintained constant through continuous operation.Spray DryingSpray drying is a three-step drying process involving both particle formation and drying. (1) The process begins with the atomization of a liquid feed into a spray of fine droplets. (2) Then a heated gas stream suspends the droplets, evaporating the liquid and leaving the solids in essentially their original size and shape. (3) Finally, the dried powder is separated from the gas stream and collected. Spent drying gas is either treated and exhausted to the atmosphere or recirculated to the system. These three steps are accomplished by three components: the atomizer, the disperser, and the drying chamber.The selection and operation of the atomizer is of extreme importance in achieving an optimum operation and production of top-quality powders. There are four main types of atomization: Centrifugal atomization, the most common, uses a rotating wheel or disc to break the liquid stream into droplets. The rotational speed determines the mean particle size, while the particle size distribution about the mean remains fairly constant in a system. Centrifugal atomizers are available in a large variety of sizes, from laboratory scale to very large commercial units. Hydraulic pressure-nozzle atomization forces pressurized fluid through an orifice. Multiple nozzles are used to increase capacity. The particle size depends on the pressure drop across the orifice, so that the orifice size determines the capacity of the system. This type of atomization is simpler than centrifugal, but cannot be controlled as well. It is not suitable for abrasive materials, or materials that tend to plug the orifices. Two-fluid pneumatic atomization uses nozzles, as well, but introduces a second fluid, usually compressed air, into the liquid stream to atomize it. This type of atomization has the advantage of relatively low pressures and velocities and a shorter required drying path. It is most often used in small-scale equipment, laboratory or pilot size. Sonic atomization, not yet widely used, passes a liquid over a surface vibrated at ultrasonic frequencies. It can produce very fine droplets at low flow rates. Current limitations are capacity and the range of different product that can be atomized. After atomization, a disperser brings the heated gas into contact with the droplets. The disperser must accomplish three things: mix the gas with the droplets, begin the drying process, and determine the flow paths through the drying chamber. The drying gas may be heated directly by combustion of natural gas, propane, or fuel oil, or indirectly using shell-and-tube or finned heat exchangers. Electric heaters may be used in small dryers. Industrial radial fans move the heated gas through the system.The drying chamber must be sized to allow adequate contact time for evaporation of all of the liquid to produce a dry powder product. Factors that impact the drying time include the temperature difference between the droplets and the drying gas, and their flow rates. The exact shape of the chamber depends on the drying characteristics and product specifications, but most are cylindrical with a cone-shaped lower section to facilitate collection of the product.Finally, proper configuration of the atomizer, disperser, and drying chamber is essential for complete drying and to avoid the deposit of wet material on the interior surfaces of the dryer. Designs may use co-current, counter-current, or mixed flow patterns.The powder is separated from the drying gas at the bottom of the chamber. Most often, the gas exits through an outlet duct in the center of the cone. Heavier or coarser particles will be separated at this point, dropping into the cone to be collected through an air lock. Then either cyclones or fabric filters (or both) remove the remaining powder from the exit gas. In systems producing a very fine powder, most of the collection takes place at this point.Fluid-Bed DryingFluid-bed drying is a process in which a gas is forced upward through a bed of moist particles to achieve a fluidized state. The particles are suspended in the gas stream and dry as they
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号