资源预览内容
第1页 / 共17页
第2页 / 共17页
第3页 / 共17页
第4页 / 共17页
第5页 / 共17页
第6页 / 共17页
第7页 / 共17页
第8页 / 共17页
第9页 / 共17页
第10页 / 共17页
亲,该文档总共17页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
初一上册数学知识点第一章有理数知识点一:有理数的分类正有理数零负有理数正整数正分数负整数负分数有理数含正有限小数和无限循环小数含负有限小数和无限循环小数有理数的另一种分类有理数整数分数正整数负整数0负分数正分数自然数想一想:零是整数吗?自然数一定是整数吗?自然数一定是正整数吗?整数一定是自然数吗?零是整数;自然数一定是整数;自然数不一定是正整数,因为零也是自然数;整数不一定是自然数,因为负整数不是自然数。判断正误: 不带“”号的数都是正数 ( ) 如果a是正数,那么a一定是负数 ( ) 不存在既不是正数,也不是负数的数 ( ) 表示没有温度 ( )知识点二:数轴1、填空 规定了唯一的 原点 , 正方向 和 单位长度 (三要素)的直线叫做数轴。 比3大的负整数是_;已知是整数且-4m”号连接 。知识点五:有理数加减法1、有理数的加、减法法则 同号两数相加,取相同的符号,并把绝对值相加。 绝对值不相等的异号两数相加, 取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。 互为相反数的两个数相加得0。 一个数同0相加,仍得这个数。 减去一个数,等于加上这个数的相反数。2、计算知识点六:乘除法法则 两数相乘,同号得 正 ,异号得 负 ,并把绝对值 相乘 。 0乘以任何数,都得 0 。 几个不为0的数相乘,积的符号由负因数的个数确定,负因数的个数为 偶数 时,积为正;负因数的个数为 奇数 时,积为负。 两数相除,同号得 正 ,异号得 负 ,并把绝对值 相除 。0除以任何一个不等于0的数,都得 0 。 有理数中仍然有:乘积是1的两个数互为 倒数 。 除以一个不等于0的数等于乘以这个数的 倒数 。知识点七:乘方乘方定义:求n个相同因数的积的运算,叫做乘方。 中,底数是,指数是,幂是乘方的结果;读作:的n次方 或 的n次幂。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。1、填空23中,底数是 ;指数是 ;结果是 ;读作: 。(-2)2中,底数是 ;结果是 。5中,底数是 ;指数是 。中,底数是 ;指数是 ; 幂是 。18表示 个 相乘,结果是 。2、计算:32= ; -23= ; -14= ; (-3)2= ; 05= ; 0.13= .知识点八:运算律及混合运算1、基本知识v 加法交换律: v 乘法交换律:v 加法结合律:v 乘法结合律:v 乘法分配律:v 有理数混合运算顺序:先 乘方 ;再 乘除 ;最后算 加减 。有括号,先算 括号内的运算,按小括号、中括号、大括号依次进行 。同级运算, 从左到右进行 。2、计算知识点九:科学记数法近似数把一个大于10的数表示成的形式(其中是整数数位只有一位的数,即1|a|10,是正整数),使用的是科学记数法。如:。知识点十:近似数1、近似数:在一定程度上反映被考察量的大小,能说明实际问题的意义,与准确数非常地接近,像这样的数我们称它为近似数。 2、近似数的分类:(1)具体近似数(如30.2、58.0 )(2)带单位近似数(如2.4万)(3)科学记数法(如) 3、精确度:用位数较少的近似数替代位数较多或位数无限的数,有一个近似程度的问题,这个近似程度就是精确度。四舍五入到哪一位,就说精确到哪一位(看精确度得到原数中去看在哪一位上,如:2.4万精确到千位,而非十分位,因为2.4万就是24000,4在千位上)。4、有效数字:对于一个不为0的近似数,从左边第一个不为0的数字起,到末尾数止,所有数字都是这个近似数的有效数字。求近似数要求保留n个有效数字时,第n+1个有效数字作四舍五入处理。例:0.0109有三个有效数字1、0、9,要求保留2个有效数字时,0.0109的第三个有效数字9四舍五入,变为0.0110,保留两个有效数字1、1后求出近似数0.01090.011。5、计算按括号内的要求,用四舍五入法对下列各数取近似数:(1)0.1296(精确到0.1/0.01/0.001)(2)220.45(精确到个位/0.1)(3)0.0099999(保留3个有效数字) 第二章 整式的加减知识点一:整式的相关概念代数式中的一种有理式:不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。 (分母中含有字母有除法运算的,那么式子叫做分式) 1.单项式:数或字母的积(如5n,等),单个的数或字母也是单项式。 (1)单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。( 如果一个单项式,只含有数字因数,系数是它本身,次数是0)。 (2)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数(非零常数的次数为0)。2.多项式 (1)概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。 (2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。 (3)多项式的排列: 把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。 在做多项式的排列的题时注意: (1)由于单项式的项包括它前面的性质符号,因此在排列时,仍需把每一项的性质符看作是这一项的一部分,一起移动。 (2)有两个或两个以上字母的多项式,排列时,要注意: a.先确认按照哪个字母的指数来排列。 b.确定按这个字母降幂排列,还是升幂排列。3、整式: 单项式和多项式统称为整式。4、列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“ ” 乘,或省略不写;(2)数与数相乘,仍应使用“”乘,不用“ ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .知识点二:整式的加减运算1.同类项
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号