资源预览内容
第1页 / 共120页
第2页 / 共120页
第3页 / 共120页
第4页 / 共120页
第5页 / 共120页
第6页 / 共120页
第7页 / 共120页
第8页 / 共120页
第9页 / 共120页
第10页 / 共120页
亲,该文档总共120页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第二章 一元线性回归分析思考与练习参考答案 2.1 一元线性回归有哪些基本假定?答: 假设1、解释变量X是确定性变量,Y是随机变量; 假设2、随机误差项具有零均值、同方差和不序列相关性: E(i)=0 i=1,2, ,n Var (i)=s2 i=1,2, ,n Cov(i, j)=0 ij i,j= 1,2, ,n 假设3、随机误差项与解释变量X之间不相关: Cov(Xi, i)=0 i=1,2, ,n 假设4、服从零均值、同方差、零协方差的正态分布 iN(0, s2 ) i=1,2, ,n2.2 考虑过原点的线性回归模型 Yi=1Xi+i i=1,2, ,n误差i(i=1,2, ,n)仍满足基本假定。求1的最小二乘估计解:得:2.3 证明(2.27式),Sei =0 ,SeiXi=0 。证明:其中:即: Sei =0 ,SeiXi=02.4回归方程E(Y)=0+1X的参数0,1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。答:由于iN(0, s2 ) i=1,2, ,n所以Yi=0 + 1Xi + iN(0+1Xi , s2 )最大似然函数:使得Ln(L)最大的,就是0,1的最大似然估计值。同时发现使得Ln(L)最大就是使得下式最小,上式恰好就是最小二乘估计的目标函数相同。值得注意的是:最大似然估计是在iN(0, s2 )的假设下求得,最小二乘估计则不要求分布假设。 所以在iN(0, s2 ) 的条件下, 参数0,1的最小二乘估计与最大似然估计等价。2.5 证明是0的无偏估计。证明:2.6 证明证明:2.7 证明平方和分解公式:SST=SSE+SSR证明:2.8 验证三种检验的关系,即验证:(1);(2)证明:(1)(2)2.9 验证(2.63)式:证明:其中:2.10 用第9题证明是s2的无偏估计量证明:2.11 验证决定系数与F值之间的关系式证明:2.14 为了调查某广告对销售收入的影响,某商店记录了5个月的销售收入y(万元)和广告费用x(万元),数据见表2.6,要求用手工计算:表2.6月份12345X12345Y1010202040(1) 画散点图(略)(2) X与Y是否大致呈线性关系?答:从散点图看,X与Y大致呈线性关系。(3) 用最小二乘法估计求出回归方程。计算表XY1104100206(-14)2(-4)221011001013(-7)2(3)2320000200042010027727254044004034142(-6)2和15100和Lxx=10Lyy=600和Lxy=70和100SSR=490SSE=110均3均20均20回归方程为:(4) 求回归标准误差先求SSR(Qe)见计算表。所以(5) 给出 的置信度为95%的区间估计;由于(1-a)的置信度下, 的置信区间是 查表可得所以 的95%的区间估计为:(73.182*1.915,7+3.182*1.915),即(0.906,13.094)。所以 的95%的区间估计为:(-1-3.182*6.351,-1+3.182*6.351),即(-21.211, 19.211)。的置信区间包含0,表示不显著。(6) 计算x和y的决定系数 说明回归方程的拟合优度高。(7) 对回归方程作方差分析方差分析表方差来源平方和自由度均方F值SSR490149013.364SSE110336.667SST6004F值=13.364F0.05(1,3)=10.13(当n=1,n=8时,=0.05查表得对应的值为10.13),所以拒绝原假设,说明回归方程显著。(8)做回归系数1的显著性检验H0: 1=0t值=3.656t0.05/2(3)=3.182,所以拒绝原假设,说明x对Y有显著的影响。(8) 做相关系数R的显著性检验R值=0.904R0.05(3)=0.878,所以接受原假设,说明x和Y有显著的线性关系。(9) 对回归方程作残差图并作相应的分析残差图(略) .从残差图上看出,残差是围绕e=0在一个固定的带子里随机波动,基本满足模型的假设eiN(0, s2 ), 但由于样本量太少, 所以误差较大.(10) 求广告费用为4.2万元时,销售收入将达到多少?并给出置信度为95%的置信区间.解: 当X0=4.2时, 所以广告费用为4.2万元时, 销售收入将达到28.4万元.由于置信度为1-时,Y0估计值的置信区间为:所以求得Y0的95%的置信区间为: 6.05932 ,50.74068预测误差较大.2.15 一家保险公司十分关心其总公司营业部加班的制度,决定认真调查一下现状。经过十周时间,收集了每周加班工作时间的数据和签发的新保单数目,x为每周新签发的保单数目,y为每周加班工作时间(小时)。见表2.7。表2.7周序号12345678910X825215107055048092013503256701215Y3.51.04.02.01.03.04.51.53.05.01、画散点图2、由散点图可以看出, x与y之间大致呈线性关系。3、用最小二乘法求出回归系数由表可知: 回归方程为: 4、求回归标准误差由方差分析表可以得到:SSE=1.843 故回归标准误差,=0.48。5、给出回归系数的置信度为95%的区间估计由回归系数显著性检验表可以看出,当置信度为95%时:的预测区间为-0.701,0.937, 的预测区间为0.003,0.005.的置信区间包含0,表示不拒绝为零的假设。6、决定系数 由模型概要表得到决定系数为0.9接近于1,说明模型的拟合优度高。 7. 对回归方程作方差分析由方差分析表可知:F值=72.3965.32(当n=1,n=8时,查表得对应的值为5.32)P值0,所以拒绝原假设,说明回归方程显著。8、对的显著性检验从上面回归系数显著性检验表可以得到的t统计量为t=8.509,所对应的p值近似为0,通过t检验。说明每周签发的新保单数目x对每周加班工作时间y有显著的影响。9.做相关系数显著性检验相关系数达到0.949,说明x与y显著线性相关。10、对回归方程作残差图并作相应分析从残差图上看出,残差是围绕e=0随即波动,满足模型的基本假设。11、该公司预计下一周签发新保单X0=1000张,需要的加班时间是多少?当x=1000张时,小时12、给出Y0的置信水平为95%的预测区间 通过SPSS运算得到Y0的置信水平为95%的预测区间为:(2.5195,4.8870)。13 给出E(Y0)的置信水平为95%的预测区间通过SPSS运算得到Y0的置信水平为95%的预测区间为:(3.284,4.123)。2.16 表是1985年美国50个州和哥伦比亚特区公立学校中教师的人均年工资y(美元)和学生的人均经费投入x(美元).序号yx序号yx序号yx119583334618208163059351953826422202633114191809529673620460312432032535542020939328537214192752426800454221226443914382516034295294704669222462445173922482394762661048882327186434940209692509730678571024339905020412722454408271705536252338235944225892404292585341682620627282143226443402102450035472722795336644246402829112427431592821570292045223412297122717036212922080298046256102932133016837823022250373147260153705142652542473120940285348257884123152736039823221800253349291323608162169035683322934272950414808349172197431553418443230551258453766解答:(1)绘制y对x的散点图,可以用直线回归描述两者之间的关系吗?由上图可以看出y与x的散点分布大致呈直线趋势。(2)建立y对x的线性回归。利用SPSS进行y和x的线性回归,输出结果如下:表1 模型概要RR2调整后的R2随机误差项的标准差估计值0.8350.6970.6912323.25589表2 方差分析表模型平方和自由度和平均F值P值1回归平方和6.089E816.089E8112.811.000a残差平方和2.645E8495397517.938总平方和8.734E850表3 系数表模型非标准化系数标
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号