资源预览内容
第1页 / 共41页
第2页 / 共41页
第3页 / 共41页
第4页 / 共41页
第5页 / 共41页
第6页 / 共41页
第7页 / 共41页
第8页 / 共41页
第9页 / 共41页
第10页 / 共41页
亲,该文档总共41页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
CPU的架构和工艺四十多年前,Intel的创始人戈登摩尔(Gordon Moore)通过长期的对比,研究后发现:CPU中的部件(我们现在所说的晶体管)在不断增加,其价格也在不断下降。“随着单位成本的降低以及单个集成电路集成的晶体管数量的增加;到1975年,从经济学来分析,单个集成电路应该集成65000个晶体管。”Intel此后几年的发展都被摩尔提前算在了纸上,使人们大为惊奇,“摩尔定律”也名声大振。为了让人们更直观地了解摩尔定律,摩尔及其同事总结出一句极为精练的公式 “集成电路所包含的晶体管每18个月就会翻一番”。 从摩尔定律之诞生后,芯片产业有了前进的方向:为了不断提升性能,工程师要做的是不断向芯片中添加足够多的晶体管。但这个方向很快就受到了挑战,Intel在70年代末就发现摩尔定律的预测偏离了实际,并做出了少许修改。其实摩尔定律起初只是简单观察的结果,不过却由Intel不断扩充和执行下以及成为他们最喜欢的方式,同时也是这家技术水平高、生产潜力大的企业的最有利可图的模式。在2003年ISSCC大会上,摩尔本人就指出了摩尔定律中的另一个错误,即晶圆尺寸的发展并没有按照摩尔定律预测在2003年发展到53英寸,现在只发展到12英寸(300mm)。2003年摩尔本人提出对摩尔定律质疑的主要原因,就是半导体生产工艺在0.18mm后漏电率快速上升,到0.13mm后更为严重。漏电率快速上升现象的出现,使得90nm、65nm及以后的半导体生产工艺、尤其是需要高速运行的CPU生产工艺面临严峻挑战。 摩尔定律在拉动着芯片产业飞奔的同时,在现实中的表现也常常让人们担心。国际半导体技术蓝图机构(ITRS)为IC组件的发展起草了一份雄心勃勃的发展规划,同时也提出警告,晶体管数目的增长速度显著快于设计能力的提高速度。不过,ITRS认为在设计技术之外,设计成本才是对半导体技术可持续发展的最大威胁,并导致设计和生产力之间产生鸿沟。在CPU生产厂商方面,按照摩尔定律这个速度发展,到本世纪末,处理器生产线投资至少是数千亿乃至上万亿美元。谁投资得起?投资能回收吗?IT产业能在这个方向上健康发展下去吗?但另外一个现象引起又我们注意:摩尔认为,尽管摩尔定律并不总是正确的,却似乎总可以延续下去。按照专业人士的分析,CPU的发展在触及摩尔定律的极限之前,将朝着更高性能、更低功耗、更低成本的方向发展,在可预见的未来,CPU的处理能力将继续保持高速增长,小型化、集成化永远是发展趋势。 总之在过去的四十多年,半导体工业的发展突破了一个又一个看似不可能跨越的瓶颈,神奇地遵循着摩尔定律,如今的半导体科技已经达到了几乎不可能为之的地步。而这一切都得益于生产技术的不断进步,可以预见伴随着处理器的发展,生产技术这种发展趋势仍将持续下去。 从实际情况来看,Intel最新发布的桌面级CPUPentium Extreme Edition 955,使用更先进的65 nm制程,集成了3亿7600万个晶体管。已走入不惑之年的摩尔定律面临不少问题,比如计算机整体架构落伍、漏电率和功耗、经济鸿沟,但其还继续着辉煌,这是为什么呢。下文将从生产工艺和芯片设计的角度阐述当今CPU的发展趋势,希望能解答大家对当今CPU发展的少许不解,以便让大家火眼金睛看清这场精彩纷呈的CPU斗争。 1、CPU的生产过程 要了解CPU的生产工艺,我们需要先知道CPU是怎么被制造出来的。让我们分几个步骤学习CPU的生产过程。(1)硅提纯 生产CPU等芯片的材料是半导体,现阶段主要的材料是硅Si,这是一种非金属元素,从化学的角度来看,由于它处于元素周期表中金属元素区与非金属元素区的交界处,所以具有半导体的性质,适合于制造各种微小的晶体管,是目前最适宜于制造现代大规模集成电路的材料之一。 在硅提纯的过程中,原材料硅将被熔化,并放进一个巨大的石英熔炉。这时向熔炉里放入一颗晶种,以便硅晶体围着这颗晶种生长,直到形成一个几近完美的单晶硅。以往的硅锭的直径大都是200毫米,而CPU厂商正在增加300毫米晶圆的生产。(2)切割晶圆 硅锭造出来了,并被整型成一个完美的圆柱体,接下来将被切割成片状,称为晶圆。晶圆才被真正用于CPU的制造。所谓的“切割晶圆”也就是用机器从单晶硅棒上切割下一片事先确定规格的硅晶片,并将其划分成多个细小的区域,每个区域都将成为一个CPU的内核(Die)。一般来说,晶圆切得越薄,相同量的硅材料能够制造的CPU成品就越多。(3)影印(Photolithography) 在经过热处理得到的硅氧化物层上面涂敷一种光阻(Photoresist)物质,紫外线通过印制着CPU复杂电路结构图样的模板照射硅基片,被紫外线照射的地方光阻物质溶解。而为了避免让不需要被曝光的区域也受到光的干扰,必须制作遮罩来遮蔽这些区域。这是个相当复杂的过程,每一个遮罩的复杂程度得用10GB数据来描述。(4)蚀刻(Etching) 这是CPU生产过程中重要操作,也是CPU工业中的重头技术。蚀刻技术把对光的应用推向了极限。蚀刻使用的是波长很短的紫外光并配合很大的镜头。短波长的光将透过这些石英遮罩的孔照在光敏抗蚀膜上,使之曝光。接下来停止光照并移除遮罩,使用特定的化学溶液清洗掉被曝光的光敏抗蚀膜,以及在下面紧贴着抗蚀膜的一层硅。 然后,曝光的硅将被原子轰击,使得暴露的硅基片局部掺杂,从而改变这些区域的导电状态,以制造出N井或P井,结合上面制造的基片,CPU的门电路就完成了。(5)重复、分层 为加工新的一层电路,再次生长硅氧化物,然后沉积一层多晶硅,涂敷光阻物质,重复影印、蚀刻过程,得到含多晶硅和硅氧化物的沟槽结构。重复多遍,形成一个3D的结构,这才是最终的CPU的核心。每几层中间都要填上金属作为导体。Intel的Pentium 4处理器有7层,而AMD的Athlon 64则达到了9层。层数决定于设计时CPU的布局,以及通过的电流大小。(6)封装 这时的CPU是一块块晶圆,它还不能直接被用户使用,必须将它封入一个陶瓷的或塑料的封壳中,这样它就可以很容易地装在一块电路板上了。封装结构各有不同,但越高级的CPU封装也越复杂,新的封装往往能带来芯片电气性能和稳定性的提升,并能间接地为主频的提升提供坚实可靠的基础。(7)多次测试 测试是一个CPU制造的重要环节,也是一块CPU出厂前必要的考验。这一步将测试晶圆的电气性能,以检查是否出了什么差错,以及这些差错出现在哪个步骤(如果可能的话)。接下来,晶圆上的每个CPU核心都将被分开测试。 由于SRAM(静态随机存储器,CPU中缓存的基本组成)结构复杂、密度高,所以缓存是CPU中容易出问题的部分,对缓存的测试也是CPU测试中的重要部分。 每块CPU将被进行完全测试,以检验其全部功能。某些CPU能够在较高的频率下运行,所以被标上了较高的频率;而有些CPU因为种种原因运行频率较低,所以被标上了较低的频率。最后,个别CPU可能存在某些功能上的缺陷,如果问题出在缓存上,制造商仍然可以屏蔽掉它的部分缓存,这意味着这块CPU依然能够出售,只是它可能是Celeron等低端产品。 当CPU被放进包装盒之前,一般还要进行最后一次测试,以确保之前的工作准确无误。根据前面确定的最高运行频率和缓存的不同,它们被放进不同的包装,销往世界各地。2、不断进步的生产工艺 随着生产工艺的进步,CPU应该是越做越小?可为什么现在CPU好像尺寸并没有减少多少,那么是什么原因呢?实际上CPU厂商很希望把CPU的集成度进一步提高,同样也需要把CPU做得更小,但是因为现在的生产工艺还达不到这个要求。生产工艺这4个字到底包含些什么内容呢,这其中有多少高精尖技术的汇聚,CPU生产厂商是如何应对的呢?下文将根据上面CPU制造的7个步骤展开叙述,让我们一起了解当今不断进步的CPU生产工艺。(1)晶圆尺寸 硅晶圆尺寸是在半导体生产过程中硅晶圆使用的直径值。硅晶圆尺寸越大越好,因为这样每块晶圆能生产更多的芯片。比如,同样使用0.13微米的制程在200mm的晶圆上可以生产大约179个处理器核心,而使用300mm的晶圆可以制造大约427个处理器核心,300mm直径的晶圆的面积是200mm直径晶圆的2.25倍,出产的处理器个数却是后者的2.385倍,并且300mm晶圆实际的成本并不会比200mm晶圆来得高多少,因此这种成倍的生产率提高显然是所有芯片生产商所喜欢的。 然而,硅晶圆具有的一个特性却限制了生产商随意增加硅晶圆的尺寸,那就是在晶圆生产过程中,离晶圆中心越远就越容易出现坏点。因此从硅晶圆中心向外扩展,坏点数呈上升趋势,这样我们就无法随心所欲地增大晶圆尺寸。 总的来说,一套特定的硅晶圆生产设备所能生产的硅晶圆尺寸是固定的,如果对原设备进行改造来生产新尺寸的硅晶圆的话,花费的资金是相当惊人的,这些费用几乎可以建造一个新的生产工厂。不过半导体生产商们也总是尽最大努力控制晶圆上坏点的数量,生产更大尺寸的晶圆,比如8086 CPU制造时最初所使用的晶圆尺寸是50mm,生产Pentium 4时使用200mm的硅晶圆,而Intel新一代Pentium 4 Prescott则使用300mm尺寸硅晶圆生产。300mm晶圆被主要使用在90纳米以及65纳米的芯片制造上。(2)蚀刻尺寸 蚀刻尺寸是制造设备在一个硅晶圆上所能蚀刻的一个最小尺寸,是CPU核心制造的关键技术参数。在制造工艺相同时,晶体管越多处理器内核尺寸就越大,一块硅晶圆所能生产的芯片的数量就越少,每颗CPU的成本就要随之提高。反之,如果更先进的制造工艺,意味着所能蚀刻的尺寸越小,一块晶圆所能生产的芯片就越多,成本也就随之降低。比如8086的蚀刻尺寸为3m,Pentium的蚀刻尺寸是0.80m,而Pentium 4的蚀刻尺寸当前是0.09m(90纳米)。目前Intel的300mm尺寸硅晶圆厂可以做到0.065m(65纳米)的蚀刻尺寸。 此外,每一款CPU在研发完毕时其内核架构就已经固定了,后期并不能对核心逻辑再作过大的修改。因此,随着频率的提升,它所产生的热量也随之提高,而更先进的蚀刻技术另一个重要优点就是可以减小晶体管间电阻,让CPU所需的电压降低,从而使驱动它们所需要的功率也大幅度减小。所以我们看到每一款新CPU核心,其电压较前一代产品都有相应降低,又由于很多因素的抵消,这种下降趋势并不明显。 我们前面提到了蚀刻这个过程是由光完成的,所以用于蚀刻的光的波长就是该技术提升的关键。目前在CPU制造中主要是采用2489埃和1930埃(1埃=0.1纳米)波长的氪/氟紫外线,1930埃的波长用在芯片的关键点上,主要应用于0.18微米和0.13微米制程中,而目前Intel是最新的90纳米制程则采用了波长更短的1930埃的氩/氟紫外线。 90纳米的晶体管大小(左)与流行感冒病毒的大小(右)比较: 以上两点就是CPU制造工艺中的两个因素决定,也是基础的生产工艺。这里有些问题要说明一下。Intel是全球制造技术最先进且拥有工厂最多的公司(Intel有10家以上的工厂做CPU),它掌握的技术也相当多,后面有详细叙述。AMD和Intel相比则是一家小公司,加上新工厂Fab36,它有3家左右的CPU制造工厂。同时AMD没有能力自己研发很多新技术,它主要是通过战略合作关系获取技术。 在0.25微米制程上,AMD和Intel在技术上处于同一水平,不过在向0.18微米转移时落
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号