资源预览内容
第1页 / 共5页
第2页 / 共5页
第3页 / 共5页
第4页 / 共5页
第5页 / 共5页
亲,该文档总共5页全部预览完了,如果喜欢就下载吧!
资源描述
全等三角形判定(SSS)【学习目标】1理解和掌握全等三角形判定方法“边边边”; 2能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等. 3. 探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;【要点梳理】要点一、全等三角形判定“边边边” 全等三角形判定“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果AB,AC,BC,则ABC.要点二、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表: 已知条件可选择的判定方法一边一角对应相等SAS AAS ASA两角对应相等ASA AAS两边对应相等SAS SSS要点三、如何选择三角形证全等1.可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;2.可以从已知出发,看已知条件确定证哪两个三角形全等;3.由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;4.如果以上方法都行不通,就添加辅助线,构造全等三角形.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1 证明线段相等的方法: (1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2 证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3 证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4 辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件. (3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.【典型例题】类型一、全等三角形的判定4“边边边”1、如图,在ABC和ADE中,ABAC,ADAE,BDCE,求证:BADCAE.举一反三:【变式】(2019春兴平市期末)如图,AB=AE,AC=AD,BD=CE,ABCAED吗?试说明类型二、全等三角形动态型问题2、在ABC中,ACB90,ACBC,直线经过顶点C,过A,B两点分别作的垂线AE,BF,垂足分别为E,F.(1)如图1当直线不与底边AB相交时,求证:EFAEBF.(2)将直线绕点C顺时针旋转,使与底边AB相交于点D,请你探究直线在如下位置时,EF、AE、BF之间的关系,ADBD;ADBD;ADBD.举一反三:【变式】已知:在ABC中,BAC90,ABAC,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF(1)当点D在线段BC上时(与点B不重合),如图1,求证:CFBD (2)当点D运动到线段BC的延长线上时,如图2,第(1)问中的结论是否仍然成立,并说明理由.3、(2019春张家港市期末)如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC= cm(用t的代数式表示)(2)当t为何值时,ABPDCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以v cm/秒的速度沿CD向点D运动,是否存在这样v的值,使得ABP与PQC全等?若存在,请求出v的值;若不存在,请说明理由举一反三:【变式】如图,把一个直角三角形ACB(ACB=90)绕着顶点B顺时针旋转60,使得点C旋转到AB边上的一点D,点A旋转到点E的位置F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H(1)求证:CF=DG;(2)求出FHG的度数类型三、全等三角形判定的实际应用4、如图,公园里有一条“Z字形道路ABCD,其中ABCD,在AB,BC,CD三段路旁各有一个小石凳E,M,F,且BECF,M在BC的中点.试判断三个石凳E,M,F是否恰好在一条直线上?为什么?举一反三【变式】我国的纸伞工艺十分巧妙,如图,伞不论张开还是缩拢,AED与AFD始终保持全等,因此伞柄AP始终平分同一平面内两条伞骨所成的角BAC,从而保证伞圈D能沿着伞柄滑动你知道AEDAFD的理由吗?()A边角边B角边角C边边边D角角边全等三角形判定(SAS,ASA,AAS)【学习目标】1理解和掌握全等三角形判定方法“边角边”,判定方法“角边角”,判定方法“角角边”;能运用它们判定两个三角形全等2能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等【要点梳理】要点一、全等三角形判定1“边角边”1. 全等三角形判定1“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).要点诠释:如图,如果AB ,A,AC ,则ABC. 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,ABC与ABD中,ABAB,ACAD,BB,但ABC与ABD不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.要点二、全等三角形判定2“角边角” 全等三角形判定2“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).要点诠释:如图,如果A,AB,B,则ABC.要点三、全等三角形判定3“角角边”1.全等三角形判定3“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在ABC和ADE中,如果DEBC,那么ADEB,AEDC,又AA,但ABC和ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.要点四、如何选择三角形证全等1.可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;2.可以从已知出发,看已知条件确定证哪两个三角形全等;3.由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;4.如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定1“边角边”1、如图,AD是ABC的中线,求证:ABAC2AD2、已知,如图:在ABC中,B2C,ADBC,求证:ABCDBD举一反三:【变式】已知,如图,在四边形ABCD中,AC平分BAD,CEAB于E,并且AE(ABAD),求证:BD180.类型二、全等三角形的判定2“角边角”3、如图,G是线段AB上一点,AC和DG相交于点E.请先作出ABC的平分线BF,交AC于点F;然后证明:当ADBC,ADBC,ABC2ADG时,DEBF.举一反三:【变式】已知:如图,在MPN中,H是高MQ和NR的交点,且MQNQ求证:HNPM.类型三、全等三角形的判定3“角角边”4、已知:如图,ACB90,ACBC,CD是经过点C的一条直线,过点A、B 分别作AECD、BFCD,垂足为E、F,求证:CEBF.举一反三:【变式】(2019春滕州市校级期中)已知:如图,等腰三角形ABC中,AC=BC,ACB=90,直线l经过点C(点A、B都在直线l的同侧),ADl,BEl,垂足分别为D、E求证:ADCCEB5、平面内有一等腰直角三角板(ACB90)和一直线MN过点C作CEMN于点E,过点B作BFMN于点F当点E与点A重合时(如图1),易证:AFBF2CE当三角板绕点A顺时针旋转至图2的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明举一反三:【变式】已知RtABC中,ACBC,C90,D为AB边的中点,EDF90,EDF绕D点旋转,它的两边分别交AC、CB于E、F当EDF绕D点旋转到DEAC于E时(如图1),易证;当EDF绕D点旋转到DE和AC不垂直时,在图2情况下,上述结论是否成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.窗体底端类型四、全等三角形判定的实际应用6、(2019春龙岗区期末)小强为了测量一幢高楼高AB,在旗杆CD与楼之间选定一点P测得旗杆顶C视线PC与地面夹角DPC=36,测楼顶A视线PA与地面夹角APB=54,量得P到楼底距离PB与旗杆高度相等,等于10米,量得旗杆与楼之间距离为DB=36米,小强计算出了楼高,楼高AB是多少米?第 页
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号