资源预览内容
第1页 / 共8页
第2页 / 共8页
第3页 / 共8页
第4页 / 共8页
第5页 / 共8页
第6页 / 共8页
第7页 / 共8页
第8页 / 共8页
亲,该文档总共8页全部预览完了,如果喜欢就下载吧!
资源描述
数学三考试大纲 考试科目 微积分、线性代数、概率论与数理统计 微积分 一、函数、极限、连续 考试内容 函数的概念及表示法函数的有界性、单调性、周期性和奇偶性反函数、复合函数、隐函数、分段函数基本初等函数的性质及图形初等函数数列极限与函数极限的概念函数的左极限和右极限无穷小和无穷大的概念及关系无穷小的基本性质及阶的比较极限四则运算两个重要极限函数连续与间断的概念初等函数的连续性闭区间上连续函数的性质 考试要求 1理解函数的概念,掌握函数的表示法。深入了解函数的有界性、单调性、周期性和奇偶性。 2理解复合函数、反函数、隐函数和分段函数的概念。 3. 掌握基本初等函数的性质及其图形,理解初等函数的概念。4会建立简单应用问题中的函数关系式。 5了解数列极限和函数极限(包括左、右极限)的概念。 6了解无穷小的概念和基本性质,掌握无穷小的阶的比较方法。了解无穷大的概念及其与无穷小的关系。 7了解极限的性质与极限存在的两个准则(单调有界数列有极限、夹逼定理),掌握极限四则运算法则,会应用两个重要极限。 8理解函数连续性的概念(含左连续与右连续)。 9,了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值与最小值定理和介值定理)及其简单应用。 二、一元函数微分学 考试内容 导数的概念函数的可导性与连续性之间的关系导数的四则运算基本初等函数的导数复合函数、反函数和隐函数的导数高阶导数微分的概念和运算法则微分中值定理及其应用洛必达(LHoSpital)法则函数单调性函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值 考试要求 1. 理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)。 2掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;掌握反函数与隐函数求导法以及对数求导法。 3了解高阶导数的概念,会求二阶、三阶导数及较简单函数的N阶导数。 4. 了解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性:掌握微分法。 5理解罗尔(ROl1e)定理、拉格朗日(kgrange)中值定理、柯西(oluchy)中值定理的条件和结论,掌握这三个定理的简单应用。 6会用洛必达法则求极限。 7掌握函数单调性的判别方法及其应用,掌握极值、最大值和最小值的求法(含解较简单的应用题)。 8掌握曲线凹凸性和拐点的判别方法,以及曲线的渐近线的求法。 9掌握函数作图的基本步骤和方法,会作某些简单函数的图形 三、一元函数积分学 考试内容 原函数与不定积分的概念不定积分的基本性质基本积分 公式不定积分的换元积分法和分部积分法定积分的概念和基本性质积分中值定理变上限定积分定义的函数及其导数牛顿一莱布尼茨(Newton一Leibniz)公式定积分的换元积分法和分部积分法广义积分的概念和计算定积分的应用 考试要求 1理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式;掌握计算不定积分的换元积分法和分部积分法。 2了解定积分的概念和基本性质。掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法。会求变上限定积分的导数。 3会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解一些简单的经济应用题。 4了解广义积分收敛与发散的概念,掌握计算广义积分的基本方法,了解广义积分的收敛与发散的条件。 四、多元函数微积分学 考试内容 多元函数的概念二元函数的几何意义二元函数的极限与连续性有界闭区域上二元连续函数的性质(最大值和最小值定理)偏导数的概念与计算多元复合函数的求导法隐函数求导法高阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单二重积分的计算 考试要求 1了解多元函数的概念,了解二元函数的表示法与几何意义 2了解二元函数的极限与连续的直观意义。 3了解多元函数偏导数与全微分的概念,掌握求复合函数偏导数和全微分的方法,会用隐函数的求导法则。 4了解多元函数极值和条件极值的概念掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件。会求二元函数的极值。会用拉格朗日乘数法求条件极值。会求简单多元函数的最大值和最小值,会求解一些简单的应用题。 5了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法。会计算无界区域上的较简单的二重积分。 五、无穷级数 考试内容 常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与户级数的收敛性正项级数收敛性的判别任意项级数的绝对收敛与条件收敛交错级数莱布尼茨定理幂级数的概念收敛半径、收敛区问(指开区间)和收敛域幂级数的和函数幂级数在收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式 考试要求 1了解级数的收敛与发散、收敛级数的和等概念。 2掌握级数收敛的必要条件及收敛级数的基本性质。掌握几何级数及P级数的收敛与发散的条件。掌握正项级数的比较判别法和达朗贝尔(比值)判别法。 3了解任意项级数绝对收敛与条件收敛的概念,掌握交错级数的莱布尼茨判别法,掌握绝对收敛与条件收敛的判别方法。 4会求幂级数的收敛半径和收敛域。 5了解幂级数在收敛区问内的基本性质(和函数的连续性、逐项微分和逐项积分),会求一些简单幂级数的和函数。 6. 掌握(略)等幂级数展开式,并会利用这些展开式将一些简单函数间接展成幂级数。 六、常微分方程与羡分方程 考试内容 微分方程的概念微分方程的解、通解、初始条件和特解变量i可分离的微分方程齐次方程一阶线性方程二阶常系数齐次线性方程及简单的非齐次线性方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程与差分方程的简单应用 考试要求 1了解微分方程的阶、通解、初始条件和特解等概念。 2掌握变量可分离的方程、齐次方程和一阶线性方程的求解方法。 3会解二阶常系数齐次线性方程和自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与乘积的二阶常系数非齐次线性微分方程。 4了解差分与差分方程及其通解与特解等概念。 5掌握一阶常系数线性差分方程的求解方法。 6会应用微分方程和差分方程求解一些简单的经济应用问题。 线性代数 一、行列式 考试内容, 行列式的概念和基本性质行列式按行(列)展开定理克莱姆(Crammer)法则 考试要求 1理解门阶行列式的概念。 2掌握行列式的性质,会应用行列式的性质和行列式按行(列)展开定理计算行列式。 3会用克莱姆法则解线性方程组。 二、矩阵 考试内容 矩阵的概念单位矩阵、对角矩阵、数量矩阵、三角矩阵、对称矩阵和正交矩阵矩阵的和数与矩阵的积矩阵与矩阵的积矩阵的转置逆矩阵的概念和性质矩阵的伴随矩阵矩阵的初等变换初等矩阵分块矩阵及其运算矩阵的秩 考试要求 1理解矩阵的概念,了解几种特殊矩阵的定义和性质。 2掌握矩阵的加法、数乘、乘法,以及它们的运算法则;掌握矩阵转置的性质;掌握方阵乘积的行列式的性质。 3理解逆矩阵的概念、掌握逆矩阵的性质。会用伴随矩阵求矩阵的逆。 4了解矩阵的初等变换和初等矩阵的概念;理解矩阵的秩的概念,会用初等变换求矩阵的逆和秩。 5了解分块矩阵的概念,掌握分块矩阵的运算法则。 三、向量 考试内容 向量的概念向量的和数与向量的积向量的线性组合与线性表示向量组线性相关与线性元关的概念、性质和判别法向量组的极大线性元关组向量组的秩 考试要求 1了解向量的概念,掌握向量的加法和数乘运算法则。 2理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法。 3理解向量组的极大无关组的概念,掌握求向量组的极大无关组的方法。 4理解向量组的秩的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系,会求向量组的秩。 四、线性方程组 考试内容 线性方程组的解线性方程组有解和元解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线住方程组的通解 考试要求 1理解线性方程组解的概念,掌握线性方程组有解和无解的判定方法。 2理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法。 3掌握非齐次线性方程组的通解的求法,会用其特解及相应的导出组的基础解系表示非齐次线性方程组的通解。 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念相似矩阵矩阵的相似对角矩阵实对称矩阵的特征值和特征向量 考试要求 1理解矩阵的特征值、特征向量等概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法。 2理解矩阵相似的概念、掌握相似矩阵的性质,了解矩阵可对角化的充分条件和必要条件,掌握将矩阵化为相似对角矩阵的方法。 3掌握实对称矩阵的特征值和特征向量的性质。 六、二次型 考试内容 二次型及其矩阵表示合同矩阵二次型的秩惯性定理二次型的标准形和规范形正交变换二次型及其矩阵的正定性 考试要求 1了解二次型的概念,会用矩阵形式表示二次型。 2理解二次型的秩的概念,了解二次型的标准形、规范形等概念(了解惯性定理的条件和结论,会甩正交变换和配方法化二次型为标准形。正定二次型、正定矩阵的概念,掌握正定矩阵的性质。 概率论与数理统计 一、随机事件和概率 考试内容 随机事件与样本空间事件的关系事件的运算及性质事件的独立性完全事件组概率的定义概率的基本性质古典型概率条件概率“法公式乘法公式全概率公式和贝叶斯(Bayes)公式独立重复试验 考试要求 1了解样本空间的概念,理解随机事件的概念,掌握事件间的关系及运算。 2,理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率;掌握概率的加法、乘法公式以及全概率公式、贝叶斯公式。 3理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法 二、随机变量及其概率分布 考试内容 随机变量及其概率分布随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的概率分布二维随机变量及其联合(概率)分布二维离散型随机变量的联合概率分布和边缘分布二维连续型随机变量的联合概率密度和边缘
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号