资源预览内容
第1页 / 共30页
第2页 / 共30页
第3页 / 共30页
第4页 / 共30页
第5页 / 共30页
第6页 / 共30页
第7页 / 共30页
第8页 / 共30页
第9页 / 共30页
第10页 / 共30页
亲,该文档总共30页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第十三单元 RNA的生物合成一、DNA指导的RNA合成(转录)(一)概述转录(transcription):以一段DNA的遗传信息为模板,在RNA聚合酶作用下,合成出对应的RNA的过程,或在DNA指导下合成RNA。转录产物:mRNA 、rRNA、 tRNA、小RNA。除某些病毒基因组RNA外,绝大多数RNA分子都来自DNA转录的产物。1.转录研究的主要问题RNA聚合酶, 转录过程, 转录后加工, 转录的调控。-是基本内容,是目前研究的焦点,转录调控是基因调控的核心。2.转录与DNA复制的异同相同:要有模板,新链延伸方向53,碱基的加入严格遵循碱基配对原则。相异:复制需要引物,转录不需引物。 转录时,模板DNA的信息全保留,复制时模板信息是半保留。 转录时,RNA聚合酶只有53聚合作用,无53及35外切活性。3.转录过程RNA合成的酶学过程;RNA合成的起始信号和终止信号,即DNA分子上的特定序列。DNA正链为与mRNA序列相同的DNA链,负链为与正链互补的DNA链。转录单位的起点核苷酸为+1,起点右边为下游(转录区),转录起点左侧为上游,用负数表示:-1,-2,-3。RNA链的转录,起始于DNA模板的一个特定位点,并在另一位点终止,此转录区域称为一个转录单位。一个转录单位可以是一个基因(真核),也可以是多个基因(原核)。转录是有选择性的,细胞不同生长发育阶段和细胞环境条件的改变,将转录不同的基因。转录的起始由DNA上的启动子区控制,转录的终止由DNA上的终止子控制,转录是通过DNA指导的RNA聚合酶来实现的。(二)RNA聚合酶1.E.coli RNA聚合酶(原核)E.coli和其它原核细胞一样,只有一种RNA聚合酶,合成各种RNA(mRNA、tRNA、rRNA)。一个E.coli细胞中约有7000个RNA聚合酶分子,在任一时刻,大部分聚合酶(5000左右)正在参与RNA的合成,具体数量依生长条件而定。E.coli RNA聚合酶全酶|(holoenzyme)分子量46万Da,由六个亚基组成,2 ,另有两个Zn2+。无亚基的酶叫核心酶,核心酶只能使已开始合成的RNA链延长,而不具备起始合成活性,加入亚基后,全酶才具有起始合成RNA的能力,因此,亚基称为起始因子。不同的细菌,、亚基分子量变化不大,亚基分子量变化较大,44KD92KD。亚基的功能:核心酶在DNA上滑动,亚基能增加酶与DNA启动子的结合常数,增加停留时间,使聚合酶迅速找到启动子并与之结合,亚基本身无催化活性。不同的因子识别不同的启动子,从而表达不同的基因。不同的原核生物,都具有相同的核心酶,但亚基有所差别,这决定了原核基因表达的选择性。RNA聚合酶以完整的双链DNA为模板,转录时DNA的双链结构部分解开,转录后DNA仍然保持双链的结构。核心酶覆盖60bp的DNA区域,其中解链部分17bp左右,RNA-DNA杂合链约12bp。纯的RNA聚合酶,在离体条件下可转录双链DNA,但在体内,DNA的两条链中只有一条可用于转录,这可能是由于RNA聚合酶在分离时丢失了亚基引起的。解旋和重新螺旋化也是RNA聚合酶的内在特性,在酶的前端解螺旋,在后端以相反方向重新螺旋化,活体状况中,可能还有其它酶活性来帮助调整DNA的拓扑学性质。37时,RNA聚合酶的聚合速度可达40100个核苷酸/秒。2.真核生物RNA聚合酶真核生物的转录机制要复杂得多,有三种细胞核内的RNA聚合酶:RNA聚合酶I转录rRNA,RNA聚合酶II转录mRNA,RNA聚合酶III转录tRNA和其它小分子RNA。这三种RNA聚合酶分子量都在50万左右,亚基数分别为615。动物、植物、昆虫等不同来源的细胞,RNApol的活性都可被低浓度的-鹅膏蕈碱抑制,而RNApol不受抑制。动物RNApol受高浓度的-鹅膏蕈碱抑制,而酵母、昆虫的RNApol不受抑制。除了细胞核RNA聚合酶外,还分离到线粒体和叶绿体RNA聚合酶,它们的结构简单,能转录所有种类的RNA,类似于细菌RNA聚合酶。3.噬菌体T3和T7编码的RNA聚合酶仅为一条分子量11KD的多肽链,这些聚合酶只需要识别噬菌体DNA的少数启动子,并无选择地与其作用,37时的聚合速度200nt/秒。(三)RNA聚合酶催化的转录过程(E.coli)1.起始RNA聚合酶结合到DNA双链的特定部位,局部解开双螺旋,第一个核苷酸掺入转录起始位点,从此开始RNA链的延伸。在新合成的RNA链的5末端,通常为带有三个磷酸基团的鸟苷或腺苷(pppG或pppA),即合成的第一个底物是GTP或ATP。起始过程中,因子起关键作用,它能使聚合酶迅速地与DNA的启动子结合,亚基与结合时,亚基的构象有利于核心酶与启动子紧密结合。正链是与mRNA序列相同的链,负链是模板链。转录起点是+1,上游是-1。2.延长转录起始后,亚基释放,离开核心酶,使核心酶的亚基构象变化,与DNA模板亲和力下降,在DNA上移动速度加快,使RNA链不断延长。转录起始后,亚基便从全酶中解离出来,然后nusA亚基结合到核心酶上,由nusA亚基识别序列序列。3.终止RNA聚合酶到达转录终止点时,在终止辅助因子的帮助下,聚合反应停止,RNA链和聚合酶脱离DNA模板链,nusA又被亚基所取代。由此形成RNA聚合酶起始复合物与终止复合物两种形式的循环。(四)启动子和转录因子启动子:RNA聚合酶识别、结合并开始转录所必需的一段DNA序列。转录因子:RNA聚合酶在进行转录时,常需要一些辅助因子(蛋白质)参与作用,此类蛋白质统称为转录因子。足迹法和DNA测序法可用来确定启动子的序列结构。1.原核启动子结构与功能分析比较上百种启动子序列,发现不同的启动子都存在保守的共同序列,包括RNA聚合酶识别位点和结合位点。(1)-10序列(Pribnow框)在转录起点上游大约-10处,有一个6bp的保守序列TATAAT,称Pribnow框。此段序列出现在-4到-13bp之间,每个位点的保守性在45%-100%。频度: T89 A89 T50 A65 A65 T100据预测,Pribnow框中,一开始的TA和第6位最保守的T在结合RNA聚合酶时起十分重要的作用。目前认为,Pribnow框决定转录方向。酶在此部位与DNA结合形成稳定的复合物,Pribnow框中DNA序列在转录方向上解开,形成开放型起始结构,它是RNA聚合酶牢固的结合位点,是启动子的关键部位。RNA聚合酶的结合,诱导富含AT的Pribnow框的双链解开,然后进一步扩大成17个核苷酸长度的泡状物,在泡状物中RNA聚合酶从模板链开始转录RNA产物。(2)-35序列(Sexfama box,识别区域)只含-10序列的DNA不能转录,在-10序列上游还有一个保守序列,其中心约在-35位置,称为-35序列,此序列为RNA酶的识别区域。各碱基出现频率如下:T85 T83 G81 A61 C69 A52 ,其中TTG十分保守。-35序列的功能:它是原核RNA聚合酶全酶依靠因子的初始识别位点。因此,-35序列对RNA聚合酶全酶有很高的亲和性。-35序列的核苷酸结构,在很大程度上决定了启动子的强度,RNA聚合酶易识别强的启动子。-35序列提供RNA聚合酶识别信号,-10序列有助于DNA局部双链解开,启动子结构的不对称性决定了转录的方向。2.真核启动子真核基因的转录十分复杂,对启动子的分析要比原核基因的困难得多。真核生物有三种RNA聚合酶:RNA聚合酶I、II、III,分别转录rRNA、mRNA、tRNA和小分子RNA,这三类聚合酶的启动子各有其结构特点。(1)RNA聚合酶的启动子RNA聚合酶的启动子有三个保守区:TATA框(Hogness框),中心在-25至-30,长度7bp左右。碱基频率:T82 A97 A85 A63 (T37 )A83 A50(T37 )(全为A-T,少数含有一个G-C对)。此序列功能:使DNA双链解开,并决定转录的起点位置,失去TATA框,转录将可能在许多位点上开始。TATA框的改变或缺失,直接影响DNA与酶的结合程度,会使转录起始点偏移,因此,TATA是绝大多数真核基因正确表达所必需的。由于RNA聚合酶分子有相对固定的空间结构,同此框的结合位点和转录反应催化位点的距离,决定了起始位点的正确选择。启动子特定序列和酶的正确结构,把酶置于一种正确的构象中,决定了识别的正确性和转录起始的正确性。CAAT框,中心在-75处,9bp,共有序列GGT(G)CAATCT,功能:与RNA聚合酶结合。GC框,在CAAT框上游,序列GGGCGG,与某些转录因子结合。CAAT和GC框均为上游序列,对转录的起始频率有较大影响。(2)RNApol的启动子RNApol的启动子在转录区内部。(五)终止子和终止因子终止子:提供转录终止信号的一段DNA序列。终止因子:协助RNA聚合酶识别终止子的蛋白质辅助因子。有些终止子的作用可被特异的因子所阻止,使酶越过终止子继续转录,称为通读,这类引起抗终止作用的蛋白质称为抗终止因子。终止子位于已转录的序列中,DNA的终止子可被RNA聚合酶本身或其辅助因子识别。1.大肠杆菌中的两类终止子所有原核生物的终止子在终止点之前都有一个回文结构,它转录出来的RNA可以形成一个颈环式的发荚结构。(1)不依赖于的终止子(简单终止子)简单终止子除具有发夹结构外,在终止点前有一寡聚U序列,回文对称区通常有一段富含GC的序列。寡聚U序列可能提供信号使RNA聚合酶脱离模板。(2)依赖的终止子依赖的终止子,必需在因子存在时,才发生终止作用。终止点前无寡聚U序列,回文对称区不富含GC。因子是55KD的蛋白质,可水解三磷酸核苷。2.抗终止作用通读往往发生在强启动子、弱终止子的基因上。抗终止作用常见于某些噬菌体的时序控制。早期基因于后基因之间以终止子相隔开,通过抗终止作用可以打开后基因的表达。噬菌体前早期(immediate early)基因的产物N蛋白就是一种抗终止因子。它与RNA聚合酶作用使其在左右两个终止子处发生通读,从而表达晚早期(delayed early)基因。晚早期基因的产物Q蛋白也是一种抗终止因子,它能使晚早期基因得以表达。二、转录过程的调节控制基因的表达是受到严格的调节控制的,转录水平的调控是关键的环节,转录调控主要发生在起始和终止阶段。时序调控:生长、发育、分化、时间程序。适应调控:细胞内外环境改变。可位于基因的上游或下游区或内含子中。操纵子:原核生物基因表达的协调单位,包括结构基因、调节基因及由调节基因产物所识别的控制序列(启动子、操纵基因)。增强子:真核生物、病毒的基因组内,对转录起增强作用的一段DNA序列。它具有长距离效应,与方向无关,只作用于同一条DNA链上的启动子。转录水平的调控取决于调节因子(RNA或蛋白质)与启动子、增强子、终止子之间的相互作用。(一)原核生物的转录调控1.操纵子模型调节基因的产物可以是负调节物(如阻遏蛋白),也可以是正调节物,它们与操纵基因作用,关闭或打开结构基因的表达。(1)操纵子的基本结构操纵子的调控区有一个操纵序列,一个启动序列及一个CAP位点,调控区下游有几个结构基因,还有一个调节基因编码阻遏蛋白,阻遏蛋白与操纵序列结合,使操纵子受阻遏而处于关闭状态。若cAMP 与CAP结合,形成的复合物与CAP位点结合,可增大操纵子的转录活性。阻遏蛋白的负性调节和CAP的正性调节共同调节结构基因的表达,操纵子机制在原核基因表达调控中具有较善遍的意义,因其多是几个功能相关基因串
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号